Advertisement

Other Cardiomyopathies: Clinical Assessment and Imaging in Diagnosis and Patient Management

  • Marco MerloEmail author
  • Davide Stolfo
  • Giancarlo Vitrella
  • Elena Abate
  • Bruno Pinamonti
  • Francesco Negri
  • Anita Spezzacatene
  • Marco Anzini
  • Enrico Fabris
  • Francesca Brun
  • Lorenzo Pagnan
  • Manuel Belgrano
  • Giorgio Faganello
  • Gianfranco Sinagra
Chapter

Abstract

In this chapter describes clinical and imaging assessment in diagnosis and patient management of other cardiomyopathies (CMP) not included among the previously defined main groups of CMP. Most of these unclassified CMP are characterized by frequent reversibility of myocardial dysfunction after adequate treatment. The peculiar form called left ventricular noncompaction is also addressed.

Keywords

Right Ventricular Cardiac Magnetic Resonance Late Gadolinium Enhancement Wall Motion Abnormality Right Ventricular Dysfunction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Clip 21.1a

(MOV 1384 kb)

Clip 21.1b

(MOV 1551 kb)

Clip 21.1c

(MOV 1648 kb)

Clip 21.1d

(MOV 1524 kb)

Clip 21.2a

(MOV 1106 kb)

Clip 21.2b

(MOV 1404 kb)

Clip 21.2c

(MOV 1128 kb)

Clip 21.2d

(MOV 1337 kb)

Clip 21.2e

(MOV 1161 kb)

Clip 21.2f

(MOV 1978 kb)

Clip 21.2g

(MOV 1905 kb)

Clip 21.2h

(MOV 2054 kb)

Clip 21.2i

(MOV 2014 kb)

Clip 21.3a

(MOV 1411 kb)

317040_1_En_21_MOESM15_ESM.mp4 (817 kb)
Clip 21.3b (MP4 816 kb)
317040_1_En_21_MOESM16_ESM.mp4 (536 kb)
Clip 21.3c (MP4 535 kb)
317040_1_En_21_MOESM17_ESM.mp4 (691 kb)
Clip 21.4a (MP4 691 kb)
317040_1_En_21_MOESM18_ESM.mp4 (1 mb)
Clip 21.4b (MP4 1052 kb)
Clip 21.4c

(MOV 1265 kb)

Clip 21.4d

(MOV 1345 kb)

Clip 21.5a

(MOV 954 kb)

Clip 21.5b

(MOV 932 kb)

317040_1_En_21_MOESM23_ESM.mp4 (1.4 mb)
Clip 21.6a (MP4 1462 kb)
317040_1_En_21_MOESM24_ESM.mp4 (1.2 mb)
Clip 21.6b (MP4 1252 kb)
317040_1_En_21_MOESM25_ESM.mov (890 kb)
Clip 21.6c (MOV 890 kb)
Clip 21.7a

(MOV 2004 kb)

Clip 21.7b

(MOV 2125 kb)

Clip 21.7c

(MOV 2139 kb)

Clip 21.7d

(MOV 2153 kb)

Clip 21.8a

(MOV 970 kb)

Clip 21.8b

(MOV 890 kb)

Clip 21.8c

(MOV 1008 kb)

Clip 21.8d

(MOV 1007 kb)

317040_1_En_21_MOESM34_ESM.mov (729 kb)
Clip 21.9a (MOV 729 kb)
317040_1_En_21_MOESM35_ESM.mp4 (570 kb)
Clip 21.9b (MP4 570 kb)

References

  1. 1.
    Huffman C, Wagman G, Fudim M et al (2010) Reversible cardiomyopathies – a review. Transplant Proc 42:3673–3678PubMedGoogle Scholar
  2. 2.
    Demakis JG, Rahimtoola SH, Sutton GC et al (1971) Natural course of peripartum cardiomyopathy. Circulation 44:1053–1061PubMedGoogle Scholar
  3. 3.
    Pearson GD, Veille JC, Rahimtoola S et al (2000) Peripartum cardiomyopathy: National Heart, Lung, and Blood Institute and Office of Rare Diseases (National Institutes of Health) workshop recommendations and review. JAMA 283:1183–1188PubMedGoogle Scholar
  4. 4.
    Givertz MM (2013) Cardiology patient page: peripartum cardiomyopathy. Circulation 127:e622–e626PubMedGoogle Scholar
  5. 5.
    Sliwa K, Skudicky D, Bergemann A et al (2000) Peripartum cardiomyopathy: analysis of clinical outcome, left ventricular function, plasma levels of cytokines and Fas/APO-1. J Am Coll Cardiol 35:701–705PubMedGoogle Scholar
  6. 6.
    Bello N, Rendon IS, Arany Z (2013) The relationship between pre-eclampsia and peripartum cardiomyopathy: a systematic review and meta-analysis. J Am Coll Cardiol 62:1715–1723PubMedGoogle Scholar
  7. 7.
    Peters F, Khandheria BK, dos Santos C et al (2013) Peripartum cardiomyopathy associated with left ventricular noncompaction phenotype and reversible rigid body rotation. Circ Heart Fail 6:e62–e63PubMedGoogle Scholar
  8. 8.
    Renz DM, Rottgen R, Habedank D et al (2011) New insights into peripartum cardiomyopathy using cardiac magnetic resonance imaging. Röfo 183:834–841PubMedGoogle Scholar
  9. 9.
    Arora NP, Mohamad T, Mahajan N et al (2014) Cardiac magnetic resonance imaging in peripartum cardiomyopathy: a new tool to evaluate an old enigma. Am J Med 347:112–7.Google Scholar
  10. 10.
    Blauwet LA, Libhaber E, Forster O et al (2013) Predictors of outcome in 176 South African patients with peripartum cardiomyopathy. Heart 99:308–313PubMedGoogle Scholar
  11. 11.
    Dorbala S, Brozena S, Zeb S et al (2005) Risk stratification of women with peripartum cardiomyopathy at initial presentation: a dobutamine stress echocardiography study. J Am Soc Echocardiogr 18:45–48PubMedGoogle Scholar
  12. 12.
    Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113:1807–1816PubMedGoogle Scholar
  13. 13.
    Bybee KA, Kara T, Prasad A et al (2004) Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction. Ann Intern Med 141:858–865PubMedGoogle Scholar
  14. 14.
    Ruiz Bailen M, Aguayo de Hoyos E, Lopez Martnez A et al (2003) Reversible myocardial dysfunction, a possible complication in critically ill patients without heart disease. J Crit Care 18:245–252PubMedGoogle Scholar
  15. 15.
    Kawai S, Kitabatake A, Tomoike H et al (2007) Guidelines for diagnosis of takotsubo (ampulla) cardiomyopathy. Circ J 71:990–992PubMedGoogle Scholar
  16. 16.
    Lyon AR, Rees PS, Prasad S et al (2008) Stress (Takotsubo) cardiomyopathy – a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat Clin Pract Cardiovasc Med 5:22–29PubMedGoogle Scholar
  17. 17.
    Lee JW, Kim JY (2011) Stress-induced cardiomyopathy: the role of echocardiography. J Cardiovasc Ultrasound 19:7–12PubMedPubMedCentralGoogle Scholar
  18. 18.
    Kurisu S, Kihara Y (2012) Tako-tsubo cardiomyopathy: clinical presentation and underlying mechanism. J Cardiol 60:429–437PubMedGoogle Scholar
  19. 19.
    Ramaraj R, Movahed MR (2010) Reverse or inverted takotsubo cardiomyopathy (reverse left ventricular apical ballooning syndrome) presents at a younger age compared with the mid or apical variant and is always associated with triggering stress. Congest Heart Fail 16:284–286PubMedGoogle Scholar
  20. 20.
    Kurisu S, Inoue I, Kawagoe T et al (2011) Incidence and treatment of left ventricular apical thrombosis in Tako-tsubo cardiomyopathy. Int J Cardiol 146:e58–e60PubMedGoogle Scholar
  21. 21.
    Gianni M, Dentali F, Grandi AM et al (2006) Apical ballooning syndrome or takotsubo cardiomyopathy: a systematic review. Eur Heart J 27:1523–1529PubMedGoogle Scholar
  22. 22.
    Izumo M, Nalawadi S, Shiota M et al (2011) Mechanisms of acute mitral regurgitation in patients with takotsubo cardiomyopathy: an echocardiographic study. Circ Cardiovasc Imaging 4:392–398PubMedGoogle Scholar
  23. 23.
    Elesber AA, Prasad A, Bybee KA et al (2006) Transient cardiac apical ballooning syndrome: prevalence and clinical implications of right ventricular involvement. J Am Coll Cardiol 47:1082–1083PubMedGoogle Scholar
  24. 24.
    Kumar S, Kaushik S, Nautiyal A et al (2011) Cardiac rupture in takotsubo cardiomyopathy: a systematic review. Clin Cardiol 34:672–676PubMedGoogle Scholar
  25. 25.
    Shah BN, Simpson IA, Rakhit DJ (2011) Takotsubo (apical ballooning) syndrome in the recovery period following dobutamine stress echocardiography: a first report. Eur J Echocardiogr 12:E5PubMedGoogle Scholar
  26. 26.
    Choi JH, Nam JH, Son JW et al (2012) Clinical usefulness of myocardial contrast echocardiography to detect stress-induced cardiomyopathy in the emergency department. Circ J 76:1393–1398PubMedGoogle Scholar
  27. 27.
    Meimoun P, Malaquin D, Benali T et al (2009) Transient impairment of coronary flow reserve in tako-tsubo cardiomyopathy is related to left ventricular systolic parameters. Eur J Echocardiogr 10:265–270PubMedGoogle Scholar
  28. 28.
    Abdel-Aty H, Cocker M, Friedrich MG (2009) Myocardial edema is a feature of Tako-Tsubo cardiomyopathy and is related to the severity of systolic dysfunction: insights from T2-weighted cardiovascular magnetic resonance. Int J Cardiol 132:291–293PubMedGoogle Scholar
  29. 29.
    Joshi SB, Chao T, Herzka DA et al (2010) Cardiovascular magnetic resonance T2 signal abnormalities in left ventricular ballooning syndrome. Int J Cardiovasc Imaging 26:227–232PubMedGoogle Scholar
  30. 30.
    Neil C, Nguyen TH, Kucia A et al (2012) Slowly resolving global myocardial inflammation/oedema in Tako-Tsubo cardiomyopathy: evidence from T2-weighted cardiac MRI. Heart 98:1278–1284PubMedGoogle Scholar
  31. 31.
    Eitel I, Lucke C, Grothoff M et al (2010) Inflammation in takotsubo cardiomyopathy: insights from cardiovascular magnetic resonance imaging. Eur Radiol 20:422–431PubMedGoogle Scholar
  32. 32.
    Ferreira VM, Piechnik SK, Dall’Armellina E et al (2012) Noncontrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:42PubMedPubMedCentralGoogle Scholar
  33. 33.
    Gerbaud E, Montaudon M, Leroux L et al (2008) MRI for the diagnosis of left ventricular apical ballooning syndrome (LVABS). Eur Radiol 18:947–954PubMedGoogle Scholar
  34. 34.
    Mitchell JH, Hadden TB, Wilson JM et al (2007) Clinical features and usefulness of cardiac magnetic resonance imaging in assessing myocardial viability and prognosis in Takotsubo cardiomyopathy (transient left ventricular apical ballooning syndrome). Am J Cardiol 100:296–301PubMedGoogle Scholar
  35. 35.
    Eitel I, Behrendt F, Schindler K et al (2008) Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging. Eur Heart J 29:2651–2659PubMedGoogle Scholar
  36. 36.
    Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P et al (2011) Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA 306:277–286PubMedGoogle Scholar
  37. 37.
    Nakamori S, Matsuoka K, Onishi K et al (2012) Prevalence and signal characteristics of late gadolinium enhancement on contrast-enhanced magnetic resonance imaging in patients with takotsubo cardiomyopathy. Circ J 76:914–921PubMedGoogle Scholar
  38. 38.
    Naruse Y, Sato A, Kasahara K et al (2011) The clinical impact of late gadolinium enhancement in Takotsubo cardiomyopathy: serial analysis of cardiovascular magnetic resonance images. J Cardiovasc Magn Reson 13:67PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ito K, Sugihara H, Kawasaki T et al (2001) Assessment of ampulla (Takotsubo) cardiomyopathy with coronary angiography, two-dimensional echocardiography and 99mTc-tetrofosmin myocardial single photon emission computed tomography. Ann Nucl Med 15:351–355PubMedGoogle Scholar
  40. 40.
    Abe Y, Kondo M, Matsuoka R et al (2003) Assessment of clinical features in transient left ventricular apical ballooning. J Am Coll Cardiol 41:737–742PubMedGoogle Scholar
  41. 41.
    Ito K, Sugihara H, Katoh S et al (2003) Assessment of Takotsubo (ampulla) cardiomyopathy using 99mTc-tetrofosmin myocardial SPECT – comparison with acute coronary syndrome. Ann Nucl Med 17:115–122PubMedGoogle Scholar
  42. 42.
    Kurisu S, Inoue I, Kawagoe T et al (2003) Myocardial perfusion and fatty acid metabolism in patients with tako-tsubo-like left ventricular dysfunction. J Am Coll Cardiol 41:743–748PubMedGoogle Scholar
  43. 43.
    Owa M, Aizawa K, Urasawa N et al (2001) Emotional stress-induced ‘ampulla cardiomyopathy’: discrepancy between the metabolic and sympathetic innervation imaging performed during the recovery course. Jpn Circ J 65:349–352PubMedGoogle Scholar
  44. 44.
    Sato A, Aonuma K, Nozato T et al (2008) Stunned myocardium in transient left ventricular apical ballooning: a serial study of dual I-123 BMIPP and Tl-201 SPECT. J Nucl Cardiol 15:671–679PubMedGoogle Scholar
  45. 45.
    Pessoa PM, Xavier SS, Lima SL et al (2006) Assessment of takotsubo (ampulla) cardiomyopathy using iodine-123 metaiodobenzylguanidine scintigraphy. Acta Radiol 47:1029–1035PubMedGoogle Scholar
  46. 46.
    Cimarelli S, Sauer F, Morel O et al (2010) Transient left ventricular dysfunction syndrome: patho-physiological bases through nuclear medicine imaging. Int J Cardiol 144:212–218PubMedGoogle Scholar
  47. 47.
    Burgdorf C, von Hof K, Schunkert H et al (2008) Regional alterations in myocardial sympathetic innervation in patients with transient left-ventricular apical ballooning (Tako-Tsubo cardiomyopathy). J Nucl Cardiol 15:65–72PubMedGoogle Scholar
  48. 48.
    Bybee KA, Murphy J, Prasad A et al (2006) Acute impairment of regional myocardial glucose uptake in the apical ballooning (takotsubo) syndrome. J Nucl Cardiol 13:244–250PubMedGoogle Scholar
  49. 49.
    Feola M, Chauvie S, Rosso GL et al (2008) Reversible impairment of coronary flow reserve in takotsubo cardiomyopathy: a myocardial PET study. J Nucl Cardiol 15:811–817PubMedGoogle Scholar
  50. 50.
    Yoshida T, Hibino T, Kako N et al (2007) A pathophysiologic study of tako-tsubo cardiomyopathy with F-18 fluorodeoxyglucose positron emission tomography. Eur Heart J 28:2598–2604PubMedGoogle Scholar
  51. 51.
    Kwon SW, Kim BO, Kim MH et al (2013) Diverse left ventricular morphology and predictors of short-term outcome in patients with stress-induced cardiomyopathy. Int J Cardiol 168:331–337PubMedGoogle Scholar
  52. 52.
    Lee PH, Song JK, Sun BJ et al (2010) Outcomes of patients with stress-induced cardiomyopathy diagnosed by echocardiography in a tertiary referral hospital. J Am Soc Echocardiogr 23:766–771PubMedGoogle Scholar
  53. 53.
    Elesber AA, Prasad A, Lennon RJ et al (2007) Four-year recurrence rate and prognosis of the apical ballooning syndrome. J Am Coll Cardiol 50:448–452PubMedGoogle Scholar
  54. 54.
    Ellis ER, Josephson ME (2013) Heart failure and tachycardia-induced cardiomyopathy. Curr Heart Fail Rep 10:296–306PubMedGoogle Scholar
  55. 55.
    Jeong YH, Choi KJ, Song JM et al (2008) Diagnostic approach and treatment strategy in tachycardia-induced cardiomyopathy. Clin Cardiol 31:172–178PubMedGoogle Scholar
  56. 56.
    Fujino T, Yamashita T, Suzuki S et al (2007) Characteristics of congestive heart failure accompanied by atrial fibrillation with special reference to tachycardia-induced cardiomyopathy. Circ J 71:936–940PubMedGoogle Scholar
  57. 57.
    Selby DE, Palmer BM, LeWinter MM et al (2011) Tachycardia-induced diastolic dysfunction and resting tone in myocardium from patients with a normal ejection fraction. J Am Coll Cardiol 58:147–154PubMedPubMedCentralGoogle Scholar
  58. 58.
    Paelinck B, Vermeersch P, Stockman D et al (1999) Usefulness of low-dose dobutamine stress echocardiography in predicting recovery of poor left ventricular function in atrial fibrillation dilated cardiomyopathy. Am J Cardiol 83:1668–1671, A1667PubMedGoogle Scholar
  59. 59.
    Ferguson JD, Helms A, Mangrum JM et al (2009) Catheter ablation of atrial fibrillation without fluoroscopy using intracardiac echocardiography and electroanatomic mapping. Circ Arrhythm Electrophysiol 2:611–619PubMedGoogle Scholar
  60. 60.
    Tibayan FA, Lai DT, Timek TA et al (2002) Alterations in left ventricular torsion in tachycardia-induced dilated cardiomyopathy. J Thorac Cardiovasc Surg 124:43–49PubMedGoogle Scholar
  61. 61.
    To AC, Flamm SD, Marwick TH et al (2011) Clinical utility of multimodality LA imaging: assessment of size, function, and structure. JACC Cardiovasc Imaging 4:788–798PubMedGoogle Scholar
  62. 62.
    Schneider C, Malisius R, Krause K et al (2008) Strain rate imaging for functional quantification of the left atrium: atrial deformation predicts the maintenance of sinus rhythm after catheter ablation of atrial fibrillation. Eur Heart J 29:1397–1409PubMedGoogle Scholar
  63. 63.
    Faletra FF, Ho SY, Regoli F et al (2013) Real-time three dimensional transoesophageal echocardiography in imaging key anatomical structures of the left atrium: potential role during atrial fibrillation ablation. Heart 99:133–142PubMedGoogle Scholar
  64. 64.
    Hasdemir C, Yuksel A, Camli D et al (2012) Late gadolinium enhancement CMR in patients with tachycardia-induced cardiomyopathy caused by idiopathic ventricular arrhythmias. Pacing Clin Electrophysiol 35:465–470PubMedGoogle Scholar
  65. 65.
    Matsumoto K, Takahashi N, Ishikawa T et al (2006) Evaluation of myocardial glucose metabolism before and after recovery of myocardial function in patients with tachycardia-induced cardiomyopathy. Pacing Clin Electrophysiol 29:175–180PubMedGoogle Scholar
  66. 66.
    Khasnis A, Jongnarangsin K, Abela G et al (2005) Tachycardia-induced cardiomyopathy: a review of literature. Pacing Clin Electrophysiol 28:710–721PubMedGoogle Scholar
  67. 67.
    Watanabe H, Okamura K, Chinushi M et al (2008) Clinical characteristics, treatment, and outcome of tachycardia induced cardiomyopathy. Int Heart J 49:39–47PubMedGoogle Scholar
  68. 68.
    Aretz HT, Billingham ME, Edwards WD et al (1987) Myocarditis. A histopathologic definition and classification. Am J Cardiovasc Pathol 1:3–14PubMedGoogle Scholar
  69. 69.
    Kindermann I, Barth C, Mahfoud F et al (2012) Update on myocarditis. J Am Coll Cardiol 59:779–792PubMedGoogle Scholar
  70. 70.
    Anzini M, Merlo M, Sabbadini G et al (2013) Long-term evolution and prognostic stratification of biopsy-proven active myocarditis. Circulation 128:2384–2394PubMedGoogle Scholar
  71. 71.
    Imazio M, Trinchero R (2008) Myopericarditis: etiology, management, and prognosis. Int J Cardiol 127:17–26PubMedGoogle Scholar
  72. 72.
    Buiatti A, Merlo M, Pinamonti B et al (2013) Clinical presentation and long-term follow-up of perimyocarditis. J Cardiovasc Med (Hagerstown) 14:235–241Google Scholar
  73. 73.
    Pinamonti B, Alberti E, Cigalotto A et al (1988) Echocardiographic findings in myocarditis. Am J Cardiol 62:285–291PubMedGoogle Scholar
  74. 74.
    Felker GM, Boehmer JP, Hruban RH et al (2000) Echocardiographic findings in fulminant and acute myocarditis. J Am Coll Cardiol 36:227–232PubMedGoogle Scholar
  75. 75.
    Lieback E, Hardouin I, Meyer R et al (1996) Clinical value of echocardiographic tissue characterization in the diagnosis of myocarditis. Eur Heart J 17:135–142PubMedGoogle Scholar
  76. 76.
    Hiramitsu S, Morimoto S, Kato S et al (2001) Transient ventricular wall thickening in acute myocarditis: a serial echocardiographic and histopathologic study. Jpn Circ J 65:863–866PubMedGoogle Scholar
  77. 77.
    Ong P, Athansiadis A, Hill S et al (2011) Usefulness of pericardial effusion as new diagnostic criterion for noninvasive detection of myocarditis. Am J Cardiol 108:445–452PubMedGoogle Scholar
  78. 78.
    Imazio M, Brucato A, Barbieri A et al (2013) Good prognosis for pericarditis with and without myocardial involvement: results from a multicenter, prospective cohort study. Circulation 128:42–49PubMedGoogle Scholar
  79. 79.
    Di Bella G, Coglitore S, Zimbalatti C et al (2008) Strain Doppler echocardiography can identify longitudinal myocardial dysfunction derived from edema in acute myocarditis. Int J Cardiol 126:279–280PubMedGoogle Scholar
  80. 80.
    Hsiao JF, Koshino Y, Bonnichsen CR et al (2013) Speckle tracking echocardiography in acute myocarditis. Int J Cardiovasc Imaging 29:275–284PubMedGoogle Scholar
  81. 81.
    Di Bella G, Gaeta M, Pingitore A et al (2010) Myocardial deformation in acute myocarditis with normal left ventricular wall motion – a cardiac magnetic resonance and 2-dimensional strain echocardiographic study. Circ J 74:1205–1213PubMedGoogle Scholar
  82. 82.
    Escher F, Kasner M, Kuhl U et al (2013) New echocardiographic findings correlate with intramyocardial inflammation in endomyocardial biopsies of patients with acute myocarditis and inflammatory cardiomyopathy. Mediators Inflamm 2013:875420PubMedPubMedCentralGoogle Scholar
  83. 83.
    Afonso L, Hari P, Pidlaoan V et al (2010) Acute myocarditis: can novel echocardiographic techniques assist with diagnosis? Eur J Echocardiogr 11:E5PubMedGoogle Scholar
  84. 84.
    Skouri HN, Dec GW, Friedrich MG, Cooper LT (2006) Noninvasive imaging in myocarditis. J Am Coll Cardiol 48:2085–2093PubMedGoogle Scholar
  85. 85.
    Mahrholdt H, Goedecke C, Wagner A et al (2004) Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 109:1250–1258PubMedGoogle Scholar
  86. 86.
    Friedrich MG, Strohm O, Schulz-Menger J et al (1998) Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation 97:1802–1809PubMedGoogle Scholar
  87. 87.
    Abdel-Aty H, Simonetti O, Friedrich MG (2007) T2-weighted cardiovascular magnetic resonance imaging. J Magn Reson Imaging 26:452–459PubMedGoogle Scholar
  88. 88.
    Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol 53:1475–1487PubMedPubMedCentralGoogle Scholar
  89. 89.
    De Cobelli F, Pieroni M, Esposito A et al (2006) Delayed gadolinium-enhanced cardiac magnetic resonance in patients with chronic myocarditis presenting with heart failure or recurrent arrhythmias. J Am Coll Cardiol 47:1649–1654PubMedGoogle Scholar
  90. 90.
    Gutberlet M, Spors B, Thoma T et al (2008) Suspected chronic myocarditis at cardiac MR: diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology 246:401–409PubMedGoogle Scholar
  91. 91.
    Lurz P, Eitel I, Adam J et al (2012) Diagnostic performance of CMR imaging compared with EMB in patients with suspected myocarditis. JACC Cardiovasc Imaging 5:513–524PubMedGoogle Scholar
  92. 92.
    Iles L, Pfluger H, Phrommintikul A et al (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52:1574–1580PubMedGoogle Scholar
  93. 93.
    Dambrin G, Laissy JP, Serfaty JM et al (2007) Diagnostic value of ECG-gated multidetector computed tomography in the early phase of suspected acute myocarditis. A preliminary comparative study with cardiac MRI. Eur Radiol 17:331–338PubMedGoogle Scholar
  94. 94.
    Grun S, Schumm J, Greulich S et al (2012) Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol 59:1604–1615PubMedGoogle Scholar
  95. 95.
    Mahrholdt H, Wagner A, Deluigi CC et al (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114:1581–1590PubMedGoogle Scholar
  96. 96.
    Maya JD, Orellana M, Ferreira J et al (2010) Chagas disease: present status of pathogenic mechanisms and chemotherapy. Biol Res 43:323–331PubMedGoogle Scholar
  97. 97.
    Nunes MCP, Dones W, Morillo CA, Encina JJ, Ribeiro AL (2013) Chagas disease. An overview of clinical and epidemiological aspects. J Am Coll Cardiol 62:767–776PubMedGoogle Scholar
  98. 98.
    Andrade JP, Marin Neto JA, Paola AA et al (2011) Latin American Guidelines for the diagnosis and treatment of Chagas’ heart disease: executive summary. Arq Bras Cardiol 96:434–442PubMedGoogle Scholar
  99. 99.
    Acquatella H (2007) Echocardiography in Chagas heart disease. Circulation 115:1124–1131PubMedGoogle Scholar
  100. 100.
    Viotti RJ, Vigliano C, Laucella S et al (2004) Value of echocardiography for diagnosis and prognosis of chronic Chagas disease cardiomyopathy without heart failure. Heart 90:655–660PubMedPubMedCentralGoogle Scholar
  101. 101.
    Garcia-Alvarez A, Sitges M, Regueiro A et al (2011) Myocardial deformation analysis in Chagas heart disease with the use of speckle tracking echocardiography. J Card Fail 17:1028–1034PubMedGoogle Scholar
  102. 102.
    Rochitte CE, Oliveira PF, Andrade JM et al (2005) Myocardial delayed enhancement by magnetic resonance imaging in patients with Chagas’ disease: a marker of disease severity. J Am Coll Cardiol 46:1553–1558PubMedGoogle Scholar
  103. 103.
    Regueiro A, Garcia-Alvarez A, Sitges M et al (2011) Myocardial involvement in Chagas disease: insights from cardiac magnetic resonance. Int J Cardiol 165:107–112PubMedGoogle Scholar
  104. 104.
    Nunes MC, Barbosa MM, Ribeiro AL et al (2009) Left atrial volume provides independent prognostic value in patients with Chagas cardiomyopathy. J Am Soc Echocardiogr 22:82–88PubMedGoogle Scholar
  105. 105.
    Nunes MP, Colosimo EA, Reis RC et al (2012) Different prognostic impact of the tissue Doppler-derived E/e’ ratio on mortality in Chagas cardiomyopathy patients with heart failure. J Heart Lung Transplant 31:634–641PubMedGoogle Scholar
  106. 106.
    Albini A, Pennesi G, Donatelli F et al (2010) Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst 102:14–25PubMedPubMedCentralGoogle Scholar
  107. 107.
    Ky B, Vejpongsa P, Yeh ET et al (2013) Emerging paradigms in cardiomyopathies associated with cancer therapies. Circ Res 113:754–764PubMedPubMedCentralGoogle Scholar
  108. 108.
    Sawaya H, Sebag IA, Plana JC et al (2011) Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol 107:1375–1380PubMedPubMedCentralGoogle Scholar
  109. 109.
    Yeh ET, Tong AT, Lenihan DJ et al (2004) Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109:3122–3131PubMedGoogle Scholar
  110. 110.
    Lipshultz SE, Adams MJ, Colan SD et al (2013) Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation 128:1927–1995PubMedGoogle Scholar
  111. 111.
    Oreto L, Todaro MC, Umland MM et al (2012) Use of echocardiography to evaluate the cardiac effects of therapies used in cancer treatment: what do we know? J Am Soc Echocardiogr 25:1141–1152PubMedGoogle Scholar
  112. 112.
    Drafts BC, Twomley KM, D’Agostino R Jr et al (2013) Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging 6:877–885PubMedPubMedCentralGoogle Scholar
  113. 113.
    Armstrong GT, Plana JC, Zhang N et al (2012) Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol 30:2876–2884PubMedPubMedCentralGoogle Scholar
  114. 114.
    Ylanen K, Poutanen T, Savikurki-Heikkila P et al (2013) Cardiac magnetic resonance imaging in the evaluation of the late effects of anthracyclines among long-term survivors of childhood cancer. J Am Coll Cardiol 61:1539–1547PubMedGoogle Scholar
  115. 115.
    Neilan TG, Coelho-Filho OR, Pena-Herrera D et al (2012) Left ventricular mass in patients with a cardiomyopathy after treatment with anthracyclines. Am J Cardiol 110:1679–1686PubMedPubMedCentralGoogle Scholar
  116. 116.
    Tham EB, Haykowsky MJ, Chow K et al (2013) Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson 15:48PubMedPubMedCentralGoogle Scholar
  117. 117.
    Neilan TG, Coelho-Filho OR, Shah RV et al (2013) Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol 111:717–722PubMedPubMedCentralGoogle Scholar
  118. 118.
    Fallah-Rad N, Lytwyn M, Fang T et al (2008) Delayed contrast enhancement cardiac magnetic resonance imaging in trastuzumab induced cardiomyopathy. J Cardiovasc Magn Reson 10:5PubMedPubMedCentralGoogle Scholar
  119. 119.
    de Geus-Oei LF, Mavinkurve-Groothuis AM, Bellersen L et al (2011) Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity. J Nucl Med 52:560–571PubMedGoogle Scholar
  120. 120.
    Valdes Olmos RA, ten Bokkel Huinink WW, ten Hoeve RF et al (1994) Usefulness of indium-111 antimyosin scintigraphy in confirming myocardial injury in patients with anthracycline-associated left ventricular dysfunction. Ann Oncol 5:617–622PubMedGoogle Scholar
  121. 121.
    Elliott P, Andersson B, Arbustini E et al (2008) Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29:270–276PubMedGoogle Scholar
  122. 122.
    Chin TK, Perloff JK, Williams RG et al (1990) Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82:507–513PubMedGoogle Scholar
  123. 123.
    Oechslin EN, Attenhofer Jost CH, Rojas JR et al (2000) Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol 36:493–500PubMedGoogle Scholar
  124. 124.
    Oechslin E, Jenni R (2011) Left ventricular noncompaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J 32:1446–1456PubMedGoogle Scholar
  125. 125.
    Aras D, Tufekcioglu O, Ergun K et al (2006) Clinical features of isolated ventricular noncompaction in adults long-term clinical course, echocardiographic properties, and predictors of left ventricular failure. J Card Fail 12:726–733PubMedGoogle Scholar
  126. 126.
    Pignatelli RH, McMahon CJ, Dreyer WJ et al (2003) Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 108:2672–2678PubMedGoogle Scholar
  127. 127.
    Jenni R, Goebel N, Tartini R et al (1986) Persisting myocardial sinusoids of both ventricles as an isolated anomaly: echocardiographic, angiographic, and pathologic anatomical findings. Cardiovasc Intervent Radiol 9:127–131PubMedGoogle Scholar
  128. 128.
    Thavendiranathan P, Dahiya A, Phelan D et al (2013) Isolated left ventricular noncompaction controversies in diagnostic criteria, adverse outcomes and management. Heart 99:681–689PubMedGoogle Scholar
  129. 129.
    Paterick TE, Tajik AJ (2012) Left ventricular noncompaction: a diagnostically challenging cardiomyopathy. Circ J 76:1556–1562PubMedGoogle Scholar
  130. 130.
    Boyd MT, Seward JB, Tajik AJ et al (1987) Frequency and location of prominent left ventricular trabeculations at autopsy in 474 normal human hearts: implications for evaluation of mural thrombi by two-dimensional echocardiography. J Am Coll Cardiol 9:323–326PubMedGoogle Scholar
  131. 131.
    Jenni R, Oechslin E, Schneider J et al (2001) Echocardiographic and pathoanatomical characteristics of isolated left ventricular noncompaction: a step towards classification as a distinct cardiomyopathy. Heart 86:666–671PubMedPubMedCentralGoogle Scholar
  132. 132.
    Stollberger C, Finsterer J, Blazek G (2002) Left ventricular hypertrabeculation/noncompaction and association with additional cardiac abnormalities and neuromuscular disorders. Am J Cardiol 90:899–902PubMedGoogle Scholar
  133. 133.
    Stollberger C, Finsterer J (2004) Left ventricular hypertrabeculation/noncompaction. J Am Soc Echocardiogr 17:91–100PubMedGoogle Scholar
  134. 134.
    Finsterer J, Stollberger C (2011) No rationale for a diagnostic ratio in left ventricular hypertrabeculation/noncompaction. Int J Cardiol 146:91–92PubMedGoogle Scholar
  135. 135.
    Frischknecht BS, Attenhofer Jost CH, Oechslin EN et al (2005) Validation of noncompaction criteria in dilated cardiomyopathy, and valvular and hypertensive heart disease. J Am Soc Echocardiogr 18:865–872PubMedGoogle Scholar
  136. 136.
    Belanger AR, Miller MA, Donthireddi UR et al (2008) New classification scheme of left ventricular noncompaction and correlation with ventricular performance. Am J Cardiol 102:92–96PubMedGoogle Scholar
  137. 137.
    Kohli SK, Pantazis AA, Shah JS et al (2008) Diagnosis of left-ventricular noncompaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? Eur Heart J 29:89–95PubMedGoogle Scholar
  138. 138.
    Saleeb SF, Margossian R, Spencer CT et al (2012) Reproducibility of echocardiographic diagnosis of left ventricular noncompaction. J Am Soc Echocardiogr 25:194–202PubMedGoogle Scholar
  139. 139.
    Gati S, Chandra N, Bennett RL et al (2013) Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular noncompaction in athletes? Heart 99:401–408PubMedGoogle Scholar
  140. 140.
    de Groot-de Laat LE, Krenning BJ, ten Cate FJ et al (2005) Usefulness of contrast echocardiography for diagnosis of left ventricular noncompaction. Am J Cardiol 95:1131–1134PubMedGoogle Scholar
  141. 141.
    Maltagliati A, Pepi M (2000) Isolated noncompaction of the myocardium: multiplane transesophageal echocardiography diagnosis in an adult. J Am Soc Echocardiogr 13:1047–1049PubMedGoogle Scholar
  142. 142.
    Bellavia D, Michelena HI, Martinez M et al (2010) Speckle myocardial imaging modalities for early detection of myocardial impairment in isolated left ventricular noncompaction. Heart 96:440–447PubMedGoogle Scholar
  143. 143.
    van Dalen BM, Caliskan K, Soliman OI et al (2008) Left ventricular solid body rotation in noncompaction cardiomyopathy: a potential new objective and quantitative functional diagnostic criterion? Eur J Heart Fail 10:1088–1093PubMedGoogle Scholar
  144. 144.
    van Dalen BM, Caliskan K, Soliman OI et al (2011) Diagnostic value of rigid body rotation in noncompaction cardiomyopathy. J Am Soc Echocardiogr 24:548–555PubMedGoogle Scholar
  145. 145.
    Peters F, Khandheria BK, Libhaber E et al (2014) Left ventricular twist in left ventricular noncompaction. Eur Heart J Cardiovasc Imaging 15:48–55PubMedGoogle Scholar
  146. 146.
    Niemann M, Liu D, Hu K et al (2012) Echocardiographic quantification of regional deformation helps to distinguish isolated left ventricular noncompaction from dilated cardiomyopathy. Eur J Heart Fail 14:155–161PubMedGoogle Scholar
  147. 147.
    Caselli S, Autore C, Serdoz A et al (2012) Three-dimensional echocardiographic characterization of patients with left ventricular noncompaction. J Am Soc Echocardiogr 25:203–209PubMedGoogle Scholar
  148. 148.
    Bodiwala K, Miller AP, Nanda NC et al (2005) Live three-dimensional transthoracic echocardiographic assessment of ventricular noncompaction. Echocardiography 22:611–620PubMedGoogle Scholar
  149. 149.
    Petersen SE, Selvanayagam JB, Wiesmann F et al (2005) Left ventricular noncompaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol 46:101–105PubMedGoogle Scholar
  150. 150.
    Kawel N, Nacif M, Arai AE et al (2012) Trabeculated (noncompacted) and compact myocardium in adults: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging 5:357–366PubMedPubMedCentralGoogle Scholar
  151. 151.
    Korcyk D, Edwards CC, Armstrong G et al (2004) Contrast-enhanced cardiac magnetic resonance in a patient with familial isolated ventricular noncompaction. J Cardiovasc Magn Reson 6:569–576PubMedGoogle Scholar
  152. 152.
    Jacquier A, Thuny F, Jop B et al (2010) Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular noncompaction. Eur Heart J 31:1098–1104PubMedGoogle Scholar
  153. 153.
    Grothoff M, Pachowsky M, Hoffmann J et al (2012) Value of cardiovascular MR in diagnosing left ventricular noncompaction cardiomyopathy and in discriminating between other cardiomyopathies. Eur Radiol 22:2699–2709PubMedPubMedCentralGoogle Scholar
  154. 154.
    Captur G, Flett AS, Jacoby DL et al (2013) Left ventricular nonnoncompaction: the mitral valve prolapse of the 21st century? Int J Cardiol 164:3–6PubMedGoogle Scholar
  155. 155.
    Nucifora G, Aquaro GD, Pingitore A et al (2011) Myocardial fibrosis in isolated left ventricular noncompaction and its relation to disease severity. Eur J Heart Fail 13:170–176PubMedGoogle Scholar
  156. 156.
    Dodd JD, Holmvang G, Hoffmann U et al (2007) Quantification of left ventricular noncompaction and trabecular delayed hyperenhancement with cardiac MRI: correlation with clinical severity. AJR Am J Roentgenol 189:974–980PubMedGoogle Scholar
  157. 157.
    Dursun M, Agayev A, Nisli K et al (2010) MR imaging features of ventricular noncompaction: emphasis on distribution and pattern of fibrosis. Eur J Radiol 74:147–151PubMedGoogle Scholar
  158. 158.
    Junqueira FP, Fernandes FD, Coutinho AC et al (2009) Case report. Isolated left ventricular myocardiumnoncompaction: MR imaging findings from three cases. Br J Radiol 82:e37–e41Google Scholar
  159. 159.
    Melendez-Ramirez G, Castillo-Castellon F, Espinola-Zavaleta N et al (2012) Left ventricular noncompaction: a proposal of new diagnostic criteria by multidetector computed tomography. J Cardiovasc Comput Tomogr 6:346–354PubMedGoogle Scholar
  160. 160.
    Sidhu MS, Uthamalingam S, Ahmed W et al (2014) Defining left ventricular noncompaction using cardiac computed tomography. J Thorac Imaging 29:60–66PubMedGoogle Scholar
  161. 161.
    Jenni R, Wyss CA, Oechslin EN et al (2002) Isolated ventricular noncompaction is associated with coronary microcirculatory dysfunction. J Am Coll Cardiol 39:450–454PubMedGoogle Scholar
  162. 162.
    Stanton C, Bruce C, Connolly H et al (2009) Isolated left ventricular noncompaction syndrome. Am J Cardiol 104:1135–1138PubMedGoogle Scholar
  163. 163.
    McMahon CJ, Pignatelli RH, Nagueh SF et al (2007) Left ventricular noncompaction cardiomyopathy in children: characterisation of clinical status using tissue Doppler-derived indices of left ventricular diastolic relaxation. Heart 93:676–681PubMedPubMedCentralGoogle Scholar
  164. 164.
    Wald R, Veldtman G, Golding F et al (2004) Determinants of outcome in isolated ventricular noncompaction in childhood. Am J Cardiol 94:1581–1584PubMedGoogle Scholar
  165. 165.
    Punn R, Silverman NH (2010) Cardiac segmental analysis in left ventricular noncompaction: experience in a pediatric population. J Am Soc Echocardiogr 23:46–53PubMedGoogle Scholar
  166. 166.
    McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marco Merlo
    • 1
    Email author
  • Davide Stolfo
    • 1
  • Giancarlo Vitrella
    • 1
  • Elena Abate
    • 1
  • Bruno Pinamonti
    • 1
  • Francesco Negri
    • 1
  • Anita Spezzacatene
    • 1
  • Marco Anzini
    • 1
  • Enrico Fabris
    • 1
  • Francesca Brun
    • 2
  • Lorenzo Pagnan
    • 3
  • Manuel Belgrano
    • 3
  • Giorgio Faganello
    • 4
  • Gianfranco Sinagra
    • 1
  1. 1.Department of CardiologyUniversity Hospital of TriesteTriesteItaly
  2. 2.Department of CardiologyUniversity Hospital of TriesteTriesteItaly
  3. 3.Radiology UnitUniversity Hospital of TriesteTriesteItaly
  4. 4.Cardiovascular Center, Azienda per i Servizi Sanitari n° 1TriesteItaly

Personalised recommendations