Advertisement

Molecular Dynamics Simulations of Laser-Materials Interactions: General and Material-Specific Mechanisms of Material Removal and Generation of Crystal Defects

  • Eaman T. Karim
  • Chengping Wu
  • Leonid V. ZhigileiEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 195)

Abstract

Molecular dynamics simulations of laser-materials interactions are capable of providing detailed information on the complex processes induced by the fast laser energy deposition and can help in the advancement of laser-driven applications. This chapter provides a brief overview of recent progress in the atomic- and molecular-level modeling of laser-materials interactions and presents several examples of the application of atomistic simulations for investigation of laser melting and resolidification, generation of crystal defects, photomechanical spallation, and ablation of metals and molecular targets. A particular focus of the analysis of the computational results is on revealing the general and material-specific phenomena in laser-materials interactions and on making connections to experimental observations.

Keywords

Laser Fluence Irradiate Target Ablation Plume Phase Explosion Melting Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support for this work was provided by the National Science Foundation (NSF) through Grants DMR-0907247 and CMMI-1301298, Electro Scientific Industries, Inc., and the Air Force Office of Scientific Research through Grant FA9550-10-1-0541. Computational support was provided by the Oak Ridge Leadership Computing Facility (project MAT048) and NSF through the Extreme Science and Engineering Discovery Environment (project TG-DMR110090).

References

  1. 1.
    P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Ab initio molecular dynamics simulation of laser melting of silicon. Phys. Rev. Lett. 77, 3149–3152 (1996)CrossRefADSGoogle Scholar
  2. 2.
    T. Dumitrica, A. Burzo, Y. Dou, R.E. Allen, Response of Si and InSb to ultrafast laser pulses. Phys. Status Solidi B 241, 2331–2342 (2004)CrossRefADSGoogle Scholar
  3. 3.
    V. Recoules, J. Clérouin, G. Zérah, P.M. Anglade, S. Mazevet, Effect of intense laser irradiation on the lattice stability of semiconductors and metals. Phys. Rev. Lett. 96, 055503 (2006)CrossRefADSGoogle Scholar
  4. 4.
    Z. Lin, L.V. Zhigilei, V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008)CrossRefADSGoogle Scholar
  5. 5.
    H.O. Jeschke, M.S. Diakhate, M.E. Garcia, Molecular dynamics simulations of laser-induced damage of nanostructures and solids. Appl. Phys. A 96, 33–42 (2009)CrossRefADSGoogle Scholar
  6. 6.
    Z. Lin, R.E. Allen, Ultrafast equilibration of excited electrons in dynamic simulations. J. Phys. Condens. Matter 21, 485503 (2009)CrossRefGoogle Scholar
  7. 7.
    C.F. Richardson, P. Clancy, Picosecond laser processing of copper and gold: a computer simulation study. Mol. Sim. 7, 335–355 (1991)CrossRefGoogle Scholar
  8. 8.
    X. Wang, X. Xu, Molecular dynamics simulation of heat transfer and phase change during laser material interaction. J. Heat Transf. 124, 265–274 (2002)CrossRefGoogle Scholar
  9. 9.
    D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003)CrossRefADSGoogle Scholar
  10. 10.
    D.S. Ivanov, L.V. Zhigilei, The effect of pressure relaxation on the mechanisms of short pulse laser melting. Phys. Rev. Lett. 91, 105701 (2003)CrossRefADSGoogle Scholar
  11. 11.
    Z. Lin, L.V. Zhigilei, Time-resolved diffraction profiles and atomic dynamics in short pulse laser induced structural transformations: molecular dynamics study. Phys. Rev. B 73, 184113 (2006)CrossRefADSGoogle Scholar
  12. 12.
    L.V. Zhigilei, Z. Lin, D.S. Ivanov, Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion. J. Phys. Chem. C 113, 11892–11906 (2009)Google Scholar
  13. 13.
    D.A. Thomas, Z. Lin, L.V. Zhigilei, E.L. Gurevich, S. Kittel, R. Hergenröder, Atomistic modeling of femtosecond laser-induced melting and atomic mixing in Au film - Cu substrate system. Appl. Surf. Sci. 255, 9605–9612 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Z. Lin, E.M. Bringa, E. Leveugle, L.V. Zhigilei, Molecular dynamics simulation of laser melting of nanocrystalline Au. J. Phys. Chem. C 114, 5686–5699 (2010)CrossRefGoogle Scholar
  15. 15.
    E.T. Karim, Z. Lin, L.V. Zhigilei, Molecular dynamics study of femtosecond laser interactions with Cr targets. AIP Conf. Proc. 1464, 280–293 (2012)CrossRefADSGoogle Scholar
  16. 16.
    Z. Lin, R.A. Johnson, L.V. Zhigilei, Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses. Phys. Rev. B 77, 214108 (2008)CrossRefADSGoogle Scholar
  17. 17.
    D.S. Ivanov, Z. Lin, B. Rethfeld, G.M. O’Connor, Th.J. Glynn, L.V. Zhigilei, Nanocrystalline structure of nanobump generated by localized photo-excitation of metal film. J. Appl. Phys. 107, 013519 (2010)Google Scholar
  18. 18.
    C. Wu, D.A. Thomas, Z. Lin, L.V. Zhigilei, Runaway lattice-mismatched interface in an atomistic simulation of femtosecond laser irradiation of Ag film—Cu substrate system. Appl. Phys. A 104, 781–792 (2011)Google Scholar
  19. 19.
    L.V. Zhigilei, B.J. Garrison, Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes. J. Appl. Phys. 88, 1281–1298 (2000)CrossRefADSGoogle Scholar
  20. 20.
    S.I. Anisimov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, A.M. Oparin, Yu.V. Petrov, Destruction of a solid film under the action of ultrashort laser pulse. Pis’ma Zh. Eksp. Teor. Fiz. 77, 731 (JETP Lett. 77, 606–610 (2003))Google Scholar
  21. 21.
    E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Photomechanical spallation of molecular and metal targets: molecular dynamics study. Appl. Phys. A 79, 1643–1655 (2004)ADSGoogle Scholar
  22. 22.
    A.K. Upadhyay, H.M. Urbassek, Melting and fragmentation of ultra-thin metal films due to ultrafast laser irradiation: a molecular-dynamics study. J. Phys. D 38, 2933–2941 (2005)CrossRefADSGoogle Scholar
  23. 23.
    B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, I.I. Oleynik, Ablation and spallation of gold films irradiated by ultrashort laser pulses. Phys. Rev. B 82, 064113 (2010)CrossRefADSGoogle Scholar
  24. 24.
    C. Wu, L.V. Zhigilei, Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl. Phys. A 114, 11–32 (2014)Google Scholar
  25. 25.
    E. Ohmura, I. Fukumoto, Molecular dynamics simulation on laser ablation of fcc metal. Int. J. Jpn. Soc. Precis. Eng. 30, 128–133 (1996)Google Scholar
  26. 26.
    L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, Molecular dynamics model for laser ablation of organic solids. J. Phys. Chem. B 101, 2028–2037 (1997)CrossRefGoogle Scholar
  27. 27.
    R.F.W. Herrmann, J. Gerlach, E.E.B. Campbell, Ultrashort pulse laser ablation of silicon: an MD simulation study. Appl. Phys. A 66, 35–42 (1998)CrossRefADSGoogle Scholar
  28. 28.
    X. Wu, M. Sadeghi, A. Vertes, Molecular dynamics of matrix-assisted laser desorption of leucine enkephalin guest molecules from nicotinic acid host crystal. J. Phys. Chem. B 102, 4770–4778 (1998)CrossRefGoogle Scholar
  29. 29.
    L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, A microscopic view of laser ablation. J. Phys. Chem. B 102, 2845–2853 (1998)CrossRefGoogle Scholar
  30. 30.
    Y.G. Yingling, L.V. Zhigilei, B.J. Garrison, The role of photochemical fragmentation in laser ablation: a molecular dynamics study. J. Photochem. Photobiol. A 145, 173–181 (2001)CrossRefGoogle Scholar
  31. 31.
    T.E. Itina, L.V. Zhigilei, B.J. Garrison, Microscopic mechanisms of matrix assisted laser desorption of analyte molecules: insights from molecular dynamics simulation. J. Phys. Chem. B 106, 303–310 (2002)CrossRefGoogle Scholar
  32. 32.
    C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Metal ablation by picosecond laser pulses: A hybrid simulation. Phys. Rev. B 66, 115404 (2002)CrossRefADSGoogle Scholar
  33. 33.
    L.V. Zhigilei, Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation. Appl. Phys. A 76, 339–350 (2003)CrossRefADSGoogle Scholar
  34. 34.
    L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman, Computer simulations of laser ablation of molecular substrates. Chem. Rev. 103, 321–348 (2003)CrossRefGoogle Scholar
  35. 35.
    P. Lorazo, L.J. Lewis, M. Meunier, Short-pulse laser ablation of solids: from phase explosion to fragmentation. Phys. Rev. Lett. 91, 225502 (2003)CrossRefADSGoogle Scholar
  36. 36.
    N.N. Nedialkov, P.A. Atanasov, S.E. Imamova, A. Ruf, P. Berger, F. Dausinger, Dynamics of the ejected material in ultra-short laser ablation of metals. Appl. Phys. A 79, 1121–1125 (2004)CrossRefADSGoogle Scholar
  37. 37.
    C. Cheng, X. Xu, Mechanisms of decomposition of metal during femtosecond laser ablation. Phys. Rev. B 72, 165415 (2005)CrossRefADSGoogle Scholar
  38. 38.
    P. Lorazo, L.J. Lewis, M. Meunier, Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation. Phys. Rev. B 73, 134108 (2006)CrossRefADSGoogle Scholar
  39. 39.
    M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, Yu.V. Petrov, V.E. Fortov, V.A. Khokhlov, Dynamics of plume and crater formation after action of femtosecond laser pulse. Appl. Surf. Sci. 253, 6276–6282 (2007)Google Scholar
  40. 40.
    E. Leveugle, L.V. Zhigilei, Molecular dynamics simulation study of the ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation. J. Appl. Phys. 102, 074914 (2007)CrossRefADSGoogle Scholar
  41. 41.
    M. Prasad, P.F. Conforti, B.J. Garrison, On the role of chemical reactions in initiating ultraviolet ablation in poly (methyl methacrylate). J. Appl. Phys. 101, 103113 (2007)Google Scholar
  42. 42.
    M. Gill-Comeau, L.J. Lewis, Ultrashort-pulse laser ablation of nanocrystalline aluminum. Phys. Rev. B 84, 224110 (2011)CrossRefADSGoogle Scholar
  43. 43.
    L.V. Zhigilei, A.N. Volkov, E. Leveugle, M. Tabetah, The effect of the target structure and composition on the ejection and transport of polymer molecules and carbon nanotubes in matrix-assisted pulsed laser evaporation. Appl. Phys. A 105, 529–546 (2011)CrossRefADSGoogle Scholar
  44. 44.
    X. Li, L. Jiang, Size distribution control of metal nanoparticles using femtosecond laser pulse train: a molecular dynamics simulation. Appl. Phys. A 109, 367–376 (2012)CrossRefADSGoogle Scholar
  45. 45.
    R.K. Singh, J. Narayan, Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 41, 8843–8858 (1990)CrossRefADSGoogle Scholar
  46. 46.
    A. Peterlongo, A. Miotello, R. Kelly, Laser-pulse sputtering of aluminum: Vaporization, boiling, superheating, and gas-dynamic effects. Phys. Rev. E 50, 4716–4727 (1994)CrossRefADSGoogle Scholar
  47. 47.
    J.R. Ho, C.P. Grigoropoulos, J.A.C. Humphrey, Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals. J. Appl. Phys. 78, 4696–4709 (1995)CrossRefADSGoogle Scholar
  48. 48.
    X. Xu, G. Chen, K.H. Song, Experimental and numerical investigation of heat transfer and phase change phenomena during excimer laser interaction with nickel. Int. J. Heat Mass Transf. 42, 1371–1382 (1999)CrossRefGoogle Scholar
  49. 49.
    O.A. Bulgakova, N.M. Bulgakova, V.P. Zhukov, A model of nanosecond laser ablation of compound semiconductors accounting for non-congruent vaporization. Appl. Phys. A 101, 53–59 (2010)CrossRefADSGoogle Scholar
  50. 50.
    K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Huller, Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter. Phys. Rev. E 62, 1202–1214 (2000)CrossRefADSGoogle Scholar
  51. 51.
    J.P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, E. Audouard, Hydrodynamic simulations of metal ablation by femtosecond laser irradiation. Phys. Rev. B 71, 165406 (2005)CrossRefADSGoogle Scholar
  52. 52.
    A.N. Volkov, L.V. Zhigilei, Hydrodynamic multi-phase model for simulation of laser-induced non-equilibrium phase transformations. J. Phys. Conf. Ser. 59, 640–645 (2007)Google Scholar
  53. 53.
    M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Suppression of ablation in femtosecond double-pulse experiments. Phys. Rev. Lett. 103, 195002 (2009)CrossRefADSGoogle Scholar
  54. 54.
    M.E. Povarnitsyn, T.E. Itina, P.R. Levashov, K.V. Khishchenko, Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment. Phys. Chem. Chem. Phys. 15, 3108–3114 (2013)CrossRefGoogle Scholar
  55. 55.
    C. Schäfer, H.M. Urbassek, L.V. Zhigilei, B.J. Garrison, Pressure-transmitting boundary conditions for molecular dynamics simulations. Comp. Mater. Sci. 24, 421–429 (2002)CrossRefGoogle Scholar
  56. 56.
    L.V. Zhigilei, A.N. Volkov, A.M. Dongare, in Encyclopedia of Nanotechnology, ed. by B. Bhushan (Springer, Heidelberg, 2012), Part 4, pp. 470–480Google Scholar
  57. 57.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 39, 375–377 (1974)ADSGoogle Scholar
  58. 58.
    R. Holenstein, S.E. Kirkwood, R. Fedosejevs, Y.Y. Tsui, Simulation of femtosecond laser ablation of silicon. Proc. SPIE 5579, 688–695 (2004)Google Scholar
  59. 59.
    Y. Wang, X. Xu, L. Zheng, Molecular dynamics simulation of ultrafast laser ablation of fused silica film. Appl. Phys. A 92, 849–852 (2008)CrossRefADSGoogle Scholar
  60. 60.
    Y. Cherednikov, N.A. Inogamov, H.M. Urbassek, Atomistic modeling of ultrashort-pulse ultraviolet laser ablation of a thin Lif film. J. Opt. Soc. Am. B 28, 1817–1824 (2011)CrossRefGoogle Scholar
  61. 61.
    E. Leveugle, L.V. Zhigilei, A. Sellinger, J.M. Fitz-Gerald, Computational and experimental study of the cluster size distribution in MAPLE. Appl. Surf. Sci. 253, 6456–6460 (2007)CrossRefADSGoogle Scholar
  62. 62.
    A. Sellinger, E. Leveugle, J.M. Fitz-Gerald, L.V. Zhigilei, Generation of surface features in films deposited by matrix-assisted pulsed laser evaporation: the effects of the stress confinement and droplet landing velocity. Appl. Phys. A 92, 821–829 (2008)CrossRefADSGoogle Scholar
  63. 63.
    R. Knochenmuss, L.V. Zhigilei, Molecular dynamics model of ultraviolet matrix-assisted laser desorption/ionization including ionization processes. J. Phys. Chem. B 109, 22947–22957 (2005)CrossRefGoogle Scholar
  64. 64.
    R. Knochenmuss, L.V. Zhigilei, Molecular dynamics simulations of MALDI: laser fluence and pulse width dependence of plume characteristics and consequences for matrix and analyte ionization. J. Mass Spectrom. 45, 333–346 (2010)Google Scholar
  65. 65.
    R. Knochenmuss, L.V. Zhigilei, What determines MALDI ion yields? A molecular dynamics study of ion loss mechanisms. Anal. Bioanal. Chem. 402, 2511–2519 (2012)CrossRefGoogle Scholar
  66. 66.
    Y.G. Yingling, B.J. Garrison, Coarse-grained chemical reaction model. J. Phys. Chem. B 108, 1815–1821 (2004)CrossRefGoogle Scholar
  67. 67.
    L.V. Zhigilei, C. Wei, D. Srivastava, Mesoscopic model for dynamic simulations of carbon nanotubes. Phys. Rev. B 71, 165417 (2005)CrossRefADSGoogle Scholar
  68. 68.
    A.N. Volkov, L.V. Zhigilei, Mesoscopic interaction potential for carbon nanotubes of arbitrary length and orientation. J. Phys. Chem. C 114, 5513–5531 (2010)CrossRefGoogle Scholar
  69. 69.
    L. V. Zhigilei, Z. Lin, D.S. Ivanov, E. Leveugle, W.H. Duff, D. Thomas, C. Sevilla, S. J. Guy, Atomic/molecular-level simulations of laser-materials interactions. in Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties, ed. by A. Miotello, P.M. Ossi. Springer Series in Materials Science, vol. 130.(Springer, New York, 2010), pp. 43–79Google Scholar
  70. 70.
    L.V. Zhigilei, E. Leveugle, D.S. Ivanov, Z. Lin, A.N. Volkov, Molecular dynamics simulations of short pulse laser ablation: Mechanisms of material ejection and particle generation. in Nanosized Material Synthesis by Action of High-Power Energy Fluxes on Matter (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2010), pp. 147–220 (in Russian)Google Scholar
  71. 71.
    C. Wu, E. T. Karim, A. N. Volkov, and L. V. Zhigilei, Atomic movies of laser-induced structural and phase transformations from molecular dynamics simulations. in Lasers in Materials Science, ed. by M. Castillejo, P.M. Ossi, L.V. Zhigilei. Springer Series in Materials Science, vol. 191. (Springer, New York, 2014), pp. 67–100Google Scholar
  72. 72.
    X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, T.F. Kelly, Atomic scale structure of sputtered metal multilayers. Acta Mater. 49, 4005–4015 (2001)CrossRefGoogle Scholar
  73. 73.
    B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003)CrossRefADSGoogle Scholar
  74. 74.
    J.R. Dwyer, R.E. Jordan, C.T. Hebeisen, M. Harb, R. Ernstorfer, T. Dartigalongue, R.J.D. Miller, Femtosecond electron diffraction: an atomic perspective of condensed phase dynamics. J. Mod. Opt. 54, 905–922 (2007)CrossRefzbMATHADSGoogle Scholar
  75. 75.
    W.-L. Chan, R.S. Averback, D.G. Cahill, Y. Ashkenazy, Solidification velocities in deeply undercooled silver. Phys. Rev. Lett. 102, 095701 (2009)Google Scholar
  76. 76.
    B.J. Garrison, T.E. Itina, L.V. Zhigilei, The limit of overheating and the threshold behavior in laser ablation. Phys. Rev. E 68, 041501 (2003)CrossRefADSGoogle Scholar
  77. 77.
    A. Miotello, R. Kelly, Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A 69, S67–S73 (1999)CrossRefADSGoogle Scholar
  78. 78.
    N.M. Bulgakova, A.V. Bulgakov, Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Appl. Phys. A 73, 199–208 (2001)CrossRefADSGoogle Scholar
  79. 79.
    S. Amoruso, R. Bruzzese, C. Pagano, X. Wang, Features of plasma plume evolution and material removal efficiency during femtosecond laser ablation of nickel in high vacuum. Appl. Phys. A 89, 1017–1024 (2007)CrossRefADSGoogle Scholar
  80. 80.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S.I. Anisimov, Transient states of matter during short pulse laser ablation. Phys. Rev. Lett. 81, 224–227 (1998)CrossRefADSGoogle Scholar
  81. 81.
    N.A. Inogamov, Y.V. Petrov, S.I. Anisimov, A.M. Oparin, N.V. Shaposhnikov, D. von der Linde, J. Meyer-ter-Vehn, Expansion of matter heated by an ultrashort laser pulse. JETP Lett. 69, 310–316 (1999)CrossRefADSGoogle Scholar
  82. 82.
    A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, D.V. Sinitsyn, Dynamics of the spallative ablation of a GaAs surface irradiated by femtosecond laser pulses. JETP Lett. 94, 753–758 (2011)CrossRefADSGoogle Scholar
  83. 83.
    S.M. Foiles, M.I. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986)CrossRefADSGoogle Scholar
  84. 84.
    P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl. Surf. Sci. 233, 275–287 (2004)CrossRefADSGoogle Scholar
  85. 85.
    S.E. Kirkwood, A.C. Van Popta, Y.Y. Tsui, R. Fedosejevs, Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper. Appl. Phys. A 81, 729–735Google Scholar
  86. 86.
    G. Raciukaitis, M. Brikas, P. Gecys, M. Gedvilas, Accumulation effects in laser ablation of metals with high-repetition-rate lasers. Proc. SPIE 7005, 70052L (2008)Google Scholar
  87. 87.
    L.V. Zhigilei, D.S. Ivanov, E. Leveugle, B. Sadigh, E.M. Bringa, Computer modeling of laser melting and spallation of metal targets, in High-Power Laser Ablation V, ed. by C.R. Phipps. Proc. SPIE 5448, 505–519 (2004)Google Scholar
  88. 88.
    Animated sequences of snapshots from a MD simulation of laser spallation of a molecular target, http://www.faculty.virginia.edu/CompMat/spallation/animations/
  89. 89.
    J.-M. Savolainen, M.S. Christensen, P. Balling, Material swelling as the first step in the ablation of metals by ultrashort laser pulses. Phys. Rev. B 84, 193410 (2011)CrossRefADSGoogle Scholar
  90. 90.
    Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393–3407 (1999)Google Scholar
  91. 91.
    L.V. Zhigilei, Computational model for multiscale simulation of laser ablation, ed. by V.V. Bulatov, F. Cleri, L. Colombo, L.J. Lewis, N. Mousseau. Advances in Materials Theory and Modeling-Bridging Over Multiple-Length and Time Scales Mat. Res. Soc. Symp. Proc. 677, AA2.1.1–AA2.1.11 (2001)Google Scholar
  92. 92.
    S. Noël, J. Hermann, T. Itina, Investigation of nanoparticle generation during femtosecond laser ablation of metals. Appl. Surf. Sci. 253, 6310–6315 (2007)CrossRefADSGoogle Scholar
  93. 93.
    T.E. Itina, K. Gouriet, L.V. Zhigilei, S. Noël, J. Hermann, M. Sentis, Mechanisms of small clusters production by short and ultra-short pulse laser ablation. Appl. Surf. Sci. 253, 7656–7661 (2007)Google Scholar
  94. 94.
    O. Albert, S. Roger, Y. Glinec, J.C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perriere, E. Millon, Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers. Appl. Phys. A 76, 319–323 (2003)CrossRefADSGoogle Scholar
  95. 95.
    N. Jegenyes, J. Etchepare, B. Reynier, D. Scuderi, A. Dos-Santos, Z. Tóth, Time-resolved dynamics analysis of nanoparticles applying dual femtosecond laser pulses. Appl. Phys. A 91, 385–392 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Eaman T. Karim
    • 1
  • Chengping Wu
    • 1
  • Leonid V. Zhigilei
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations