Advertisement

Model-Based Disease Treatment: A Control Engineering Approach

  • Levente KovácsEmail author
Conference paper
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 8)

Abstract

Computer engineering opens new ways in healthcare including a more exact treatment possibility of different diseases. By modeling the disease and using control engineering methods it is possible to refine the treatment, but also to seek for optimal solutions/therapies. The current work summarizes the results of model-based disease treatment researches in the field of physiological modeling and control carried out at the Physiological Controls Group of the Obuda University. The developed and presented optimal algorithms and strategies focus on three diseases with high public health impact: diabetes (the artificial pancreas problem), obesity (predicting obesity-related risks) and cancer (antiangiogenic therapy). The studies are done in strong collaboration with different Hungarian hospitals, from where measurement data were obtained.

Keywords

Model Predictive Control Antiangiogenic Therapy Angiogenic Inhibition Absolute Monocyte Count Robust Control Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonzino, J.: The Biomedical Engineering Handbook. CRC in cooperation with IEEE Press (1995)Google Scholar
  2. 2.
    Kovács, L., Sápi, J., Ferenci, T., Szalay, P., Drexler, D., Eigner, G., Sas, P.I., Harmati, I., Kozlovszky, M., Sápi, Z.: Model-based optimal therapy for high-impact diseases. In: Proc. INES 2013 – 17th International Conference on Intelligent Engineering Systems, Costa Rica, pp. 209–214 (2013)Google Scholar
  3. 3.
    Wild, S., Roglic, G., Green, A., Sicree, R., King, H.: Global prevalence of diabetes – Estimates for the year 2000 and projections for 2030. Diab. Care 27(5), 1047–1053 (2004)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Fonyó, A., Ligeti, E.: Physiology, Medicina, 3rd edn., Budapest (2008)Google Scholar
  6. 6.
    Cobelli, C., Dalla Man, C., Sparacino, G., Magni, L., de Nicolao, G., Kovatchev, B.: Diabetes: Models, Signals, and Control (Methodological Review). IEEE Rev. Biomed. Eng. 2, 54–96 (2009)CrossRefGoogle Scholar
  7. 7.
    Andersen, R.E.: Obesity: etiology, assessment, treatment, and prevention. Human Kinetics Publishers, Champaign (2003)Google Scholar
  8. 8.
    SRI for Health, “Hungary’s healthcare and social system”, Budapest: Strategic Research Institute for Health (2004)Google Scholar
  9. 9.
    Avram, M.M., Avram, A.S., James, W.D.: Subcutaneous fat in normal and diseased states: 1. Introduction. J. Am. Acad. Dermat. 53, 663–670 (2005)CrossRefGoogle Scholar
  10. 10.
    Hungarian Central Statistical Institute, Mortality by common death causes (1990), http://portal.ksh.hu/pls/ksh/docs/hun/xstadat/xstadateves/iwnh001.html
  11. 11.
    Malvezzi, M., Bertuccio, P., Levi, F., La Vecchia, C., Negri, E.: European cancer mortality predictions for the year 2013. Ann. Oncol. 24(3), 792–800 (2013)CrossRefGoogle Scholar
  12. 12.
    WHO, International Agency of Research on Cancer, http://www-dep.iarc.fr/
  13. 13.
    WHO, Global Health Observatory, http://www.who.int/gho/en/
  14. 14.
    Wu, H.C., Huang, C.T., Chang, D.K.: Anti-angiogenic therapeutic drugs for treatment of human cancer. J. Cancer 4(2), 37–45 (2008)Google Scholar
  15. 15.
    Chee, F., Tyrone, F.: Closed-loop control of blood glucose. LNCIS, vol. 368. Springer, Heidelberg (2007)Google Scholar
  16. 16.
    Femat, R., Ruiz-Velazquez, E., Quiroz, G.: Weighting Restriction for Intravenous Insulin Delivery on T1DM Patient via H  ∞  Control. IEEE T. Autom. Sci. Eng. 6(2), 239–247 (2009)CrossRefGoogle Scholar
  17. 17.
    Sorensen, J.T.: A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. PhD Thesis, Dept. of Chemical Eng. Massachusetts Institute of Technology, Cambridge (1985)Google Scholar
  18. 18.
    Kovács, L., Benyó, B., Bokor, J., Benyó, Z.: Induced L2-norm Minimization of Glucose-Insulin System for Type I Diabetic Patients. Comp. Meth. Prog. Biomed. 102(2), 105–118 (2011)CrossRefGoogle Scholar
  19. 19.
    Kovács, L., Szalay, P., Almássy, Z., Barkai, L.: Applicability Results of a Nonlinear Model-Based Robust Blood Glucose Control Algorithm. J. Diab. Sci. Tech. 7(3), 708–716 (2013)CrossRefGoogle Scholar
  20. 20.
    Dalla Man, C., Rizza, R., Cobelli, C.: Meal simulation model of the glucose-insulin system. IEEE T. Biomed. Eng. 54(10), 1740–1749 (2007)CrossRefGoogle Scholar
  21. 21.
    Kovács, L., Szalay, P., Almássy, Z., Benyó, Z., Barkai, L.: Quasi In-Silico Validations of a Nonlinear LPV Model-based Robust Glucose Control Algorithm for Type I Diabetes. In: Proc. of IFAC WC 2011 – 18th World Congress of the International Federation of Automatic Control, Milano, Italy, pp. 7114–7119 (2011)Google Scholar
  22. 22.
    Mamtani, M., Kulkarni, H.: Predictive Performance of Anthropometric Indexes of Central Obesity for the Risk of Type 2 Diabetes. Arch. Med. Research 36, 581–589 (2005)CrossRefGoogle Scholar
  23. 23.
    Jebb, S.A., Elia, M.: Techniques for the measurement of body composition: A practical guide. Int. J. Obes. Relat. Metab. Disorders 17, 611–621 (1993)Google Scholar
  24. 24.
    Ferenci, T.: Biostatistical analysis of obesity related parameters in Hungarian children. MSc Thesis, Budapest University of Technology and Economics (2009) (in Hungarian)Google Scholar
  25. 25.
    Ferenci, T.: Two Applications of Biostatistics in the Analysis of Pathophysiological Processes. PhD Thesis, Óbuda Univeristy, Budapest (2013)Google Scholar
  26. 26.
    Ferenci, T., Almássy, Z., Kovács, A., Kovács, L.: Effects of obesity: a multivariate analysis of laboratory parameters. In: Proc. of 6th Int. Symp. on Appl. Comput. Intell. Inf., Timisoara, Romania, pp. 629–634 (2011)Google Scholar
  27. 27.
    Kerbel, R.S.: A cancer therapy resistant to resistance. Nature 390, 335–336 (1997)CrossRefGoogle Scholar
  28. 28.
    Kerbel, R., Folkman, J.: Clinical translation of angiogenesis inhibitors. Nature Rev. Cancer 2, 727–739 (2002)CrossRefGoogle Scholar
  29. 29.
    Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Resarch 59, 4770–4775 (1999)Google Scholar
  30. 30.
    Ledzewitz, U., Schatler, H.: A synthesis of optimal controls for a model of tumor growth under angiogenic inhibitors. In: Proc. 44th IEEE Conference on Decision and Control, and the European Control Conference, pp. 934–939 (2005)Google Scholar
  31. 31.
    Ergun, A., Camphausen, K., Wein, L.M.: Optimal Scheduling of radiotherapy an angiogenic inhibitors. Bullet. Math. Biol. 65, 407–424 (2003)CrossRefGoogle Scholar
  32. 32.
    O’Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead, J.R., Olsen, B.R., Folkman, J.: Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997)CrossRefGoogle Scholar
  33. 33.
    Pontryagin, L.S.: Mathematical Theory of Optimal Processes. Interscience Publishers (1962)Google Scholar
  34. 34.
    Lantos, B.: Theory and Design of Control Systems I-II. Akadémia Kiadó, Budapest (2005) (in Hungarian)Google Scholar
  35. 35.
    Precup, R.E., Preitl, S.: Optimisation criteria in development of fuzzy controllers with dynamics. Eng. Applic. Artif. Intellig. 17(6), 661–674 (2004)CrossRefGoogle Scholar
  36. 36.
    Kovács, L., Paláncz, B.: Glucose-insulin control of Type1 diabetic patients in H2/H ∞  space via computer algebra. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 95–109. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  37. 37.
    Drexler, D.: Optimal control of tumor-based deseases’ chemotherapy. MSc thesis, Budapest University of Technology and Economics (2011) (in Hungarian)Google Scholar
  38. 38.
    Drexler, D.A., Harmati, I., Kovács, L.: Optimal control of tumor growth using antiangiogenic chemotherapy. In: Proc. of 3rd Int. Conf. on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics, Targu-Mures, Romania, pp. 273–284 (2011)Google Scholar
  39. 39.
    Drexler, D.A., Kovács, L., Sápi, J., Harmati, I., Benyó, Z.: Model-based analysis and synthesis of tumor growth under angiogenic inhibition: a case study. In: Proc. of IFAC WC 2011 – 18th World Congress of the International Federation of Automatic Control, Milano, Italy, pp. 5012–5017 (2011)Google Scholar
  40. 40.
    Kovács, L., Szalay, P., Ferenci, T., Drexler, D.A., Sápi, J., Harmati, I., Benyó, Z.: Modeling and Control Strategies of Diseases with High Public Health Impact. In: Proc. INES 2011 – 15th International Conference on Intelligent Engineering Systems, Poprad, Slovakia, pp. 23–28 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.John von Neumann Faculty of InformaticsÓbuda UniversityBudapestHungary

Personalised recommendations