Advertisement

Diversity and Function of Bacterial Assemblages in Savanna Vegetation Soils

  • Elisa Caldeira Pires Catão
  • Fabyano Alvares Cardoso Lopes
  • Maria Regina Silveira Sartori da Silva
  • Renata Henrique Santana
  • Mercedes Maria da Cunha Bustamante
  • Ricardo Henrique KrügerEmail author
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 1)

Abstract

Savannas can be found in North and South America, Africa, Asia, and Oceania. The Cerrado is a vast savanna located mainly in the central region of Brazil. Although, Cerrado ecosystems are similar in vegetation structure, differences in soil characteristics influence the microbiota. Throughout the world savannas are rapidly being converted to agricultural and urban uses, altering physical and chemical properties of the soil, as well as microbial diversity through changes in bacterial and fungal richness, community structure, and activity. The studies addressed in this review describe soil microbial communities present in Cerrado ecosystems, which are dominated by Acidobacteria, Proteobacteria, and Actinobacteria. We highlight the importance of microbial communities to ecosystem services such as nutrient cycling, regulation of biogeochemical processes, and contribution to net primary production. Sustainable development based on the use of natural resources requires a better understanding of the microbial processes and genetic resources in this biome.

Keywords

Microbial Community Microbial Biomass Soil Microbial Community Conventional Tillage Soil Bacterial Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albuquerque deBaroos EV, Manfio GP, Ribiero Maitan V, Mendes Bataus LA, Kim SB, Maldonado LA, Goodfellow M (2003) Nocardia cerradoensis sp. nov., a novel isolate from Cerrado soil in Brazil. Int J Syst Evol Microbiol 53:29–33CrossRefGoogle Scholar
  2. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519PubMedCentralPubMedCrossRefGoogle Scholar
  3. Andrén O, Kirchmann H, Kätterer T, Magid J, Paul EA, Coleman DC (2008) Visions of a more precise soil biology. Eur J Soil Sci 59:380–390CrossRefGoogle Scholar
  4. Araujo JF, de Castro AP, Costa MM, Togawa RC, Junior GJ, Quirino BF, Bustamante MM, Williamson L, Handelsman J, Kruger RH (2012) Characterization of soil bacterial assemblies in Brazilian savanna-like vegetation reveals acidobacteria dominance. Microb Ecol 64:760–770PubMedCrossRefGoogle Scholar
  5. Bapteste E, Dupré J (2013) Towards a processual microbial ontology. Biol Philos 28:379–404PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160PubMedCrossRefGoogle Scholar
  7. Bresolin JD, Bustamante MM, Kruger RH, Silva MR, Perez KS (2010) Structure and composition of bacterial and fungal community in soil under soybean monoculture in the Brazilian Cerrado. Braz J Microbiol 41:391–403PubMedCentralPubMedCrossRefGoogle Scholar
  8. Carvalho JLN, Cerri CEP, Cerri CC, Feigl BJ, Píccolo MC, Godinho VP, Herpin U (2007) Changes of chemical properties in an oxisol after clearing of native Cerrado vegetation for agricultural use in Vilhena, Rondonia State, Brazil. Soil Tillage Res 96:95–102CrossRefGoogle Scholar
  9. Carvalho FMV, De Marco P, Ferreira LG (2009) The Cerrado into-pieces: Habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol Conserv 142:1392–1403CrossRefGoogle Scholar
  10. Castro-Neves BM, Miranda HS (1996) Efeitos do fogo no regime térmico do solo de um campo sujo de cerrado. In: Miranda HS, Saito CH, Dias BFS (eds) Impactos de queimadas em áreas de Cerrado e Restinga. ECL/UnB, Brasília, Brazil, pp 20–30Google Scholar
  11. CRS/IBAMA (2011) Relatório técnico de monitoramento do desmatamento no bioma Cerrado, 2009–2010. Acordo de cooperação técnica MMA/IBAMA/PNUD, pp 65Google Scholar
  12. de Castro VHL (2012) Identificação, isolamento e caracterização de bactérias do solo de Cerrado pertencentes ao filo Acidobacteria. Universidade Católica de Brasília, BrasíliaGoogle Scholar
  13. de Castro AP, Quirino BF, Pappas G, Kurokawa AS, Neto EL, Kruger RH (2008) Diversity of soil fungal communities of Cerrado and its closely surrounding agriculture fields. Arch Microbiol 190:129–139PubMedCrossRefGoogle Scholar
  14. de Castro AP, Quirino BF, Allen H, Williamson LL, Handelsman J, Kruger RH (2011) Construction and validation of two metagenomic DNA libraries from Cerrado soil with high clay content. Biotechnol Lett 33:2169–2175PubMedCrossRefGoogle Scholar
  15. da Silva MRSS (2004) Produção de serrapilheira, biomassa e diversidade de comunidades bacterianas do solo em áreas de Cerrado sob diferentes usos e manejos. Universidade de Brasília, BrasíliaGoogle Scholar
  16. da Silva MRSS (2012) Diversidade de comunidades bacterianas de solo de Cerrado em resposta a diferentes alterações dos ecossistemas. Universidade de Brasília, BrasíliaGoogle Scholar
  17. Ducklow H (2008) Microbial services: challenges for microbial ecologists in a changing world. Aquat Microb Ecol 53:13–19CrossRefGoogle Scholar
  18. Eiten G (1972) The Cerrado vegetation of Brazil. Bot Rev 38:201–341CrossRefGoogle Scholar
  19. Ferreira AS, Dos Santos MA, Correa GF (2013) Soil microbial response to glucose and phosphorus addition under agricultural systems in the Brazilian Cerrado. An Acad Bras Cienc 85:395–403PubMedCrossRefGoogle Scholar
  20. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364PubMedCrossRefGoogle Scholar
  21. Frazão LA, Piccolo MdC, Feigl BJ, Cerri CC, Cerri CEP (2010) Inorganic nitrogen, microbial biomass and microbial activity of a sandy Brazilian Cerrado soil under different land uses. Agric Ecosyst Environ 135:161–167CrossRefGoogle Scholar
  22. Frost P, Medina E, Menaut J-C, Solbrig O, Swift M, Walker B (1986) Responses of savannas to stress and disturbance: a proposal for a collaborative programme of research: report of a Meeting of an IUBS Working Group on Decade of the Tropics Programme/Tropical Savanna Ecosystems: International Union of Biological Sciences, News Magazine, Harare, ZimbabweGoogle Scholar
  23. Furley PA (1999) The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian Cerrados. Global Ecol Biogeogr 8:223–241CrossRefGoogle Scholar
  24. Ganz HH, Karaoz U, Getz WM, Versfeld W, Brodie EL (2012) Diversity and structure of soil bacterial communities associated with vultures in an African savanna. Ecosphere 3(6):47CrossRefGoogle Scholar
  25. Giambelluca TW, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Hoffmann WA, Franco AC, Buchert MP (2009) Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density. Agric Entomol 149:1365–1376Google Scholar
  26. Goedert WT, Wagner E, Barcellos AO (2008) Savanas tropicais: dimensão, histórico e perspectivas. FG Faleiro; AL Farias Neto. Savanas: desafios e estratégias para o equilíbrio entre sociedade, agronegócio e recursos naturais. Planaltina: Embrapa Cerrados Cap 1:49–77Google Scholar
  27. Gomes RC, Semedo LT, Soares RM, Alviano CS, Linhares LF, Coelho RR (2000) Chitinolytic activity of actinomycetes from a Cerrado soil and their potential in biocontrol. Lett Appl Microbiol 30:146–150PubMedCrossRefGoogle Scholar
  28. Green JL, Bohannan BJ, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320:1039–1043PubMedCrossRefGoogle Scholar
  29. Gremion F, Chatzinotas A, Harms H (2003) Comparative 16S rDNA and 16S rRNA sequence analysis indicates that actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 5:896–907PubMedCrossRefGoogle Scholar
  30. Griffiths BS, Kuan HL, Ritz K, Glover LA, McCaig AE, Fenwick C (2004) The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil. Microb Ecol 47:104–113PubMedCrossRefGoogle Scholar
  31. Hammer Ø, Ryan P, Harper D (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9Google Scholar
  32. Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa-area relationship for bacteria. Nature 432:750–753PubMedCrossRefGoogle Scholar
  33. Horwarth WR (2002) Biomass: soil microbial biomass. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley-Interscience, New York pp 3551Google Scholar
  34. Jeltsch F, Tietjen B, Blaum N, Rossmanith E (2010) Population and ecosystem modeling of land use and climate change impacts on arid and semiarid savanna dynamics. In: Hill MJ, Hanan NP (eds) Ecosystem function in savannas: measurement and modeling at landscape to global scales. CRC Press, Boca Raton, pp 623Google Scholar
  35. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120PubMedCentralPubMedCrossRefGoogle Scholar
  36. LeBlanc JC, Goncalves ER, Mohn WW (2008) Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74:2627–2636PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lira GTR (2012) Diversidade em comunidades bacterianas de solos de matas de galeria do Cerrado. Universidade de Brasília, BrasíliaGoogle Scholar
  38. Lopes AS (1996) Soils under Cerrado: a success story in soil management. Better Crops Int 10:9–15Google Scholar
  39. Lopes CT, Vasconcelos HL (2011) Fire increases insect herbivory in a neotropical Savanna. Biotropica 43:612–618CrossRefGoogle Scholar
  40. Marris E (2005) Conservation in Brazil: the forgotten ecosystem. Nature 437:944–945PubMedCrossRefGoogle Scholar
  41. Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112PubMedCrossRefGoogle Scholar
  42. Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838PubMedCentralPubMedCrossRefGoogle Scholar
  43. McPherson GR (1997) Ecology and management of North American Savannas. The University of Arizona Press, ArizonaGoogle Scholar
  44. Medina E, Silva JF (1990) Savannas of Northern South America: a steady state regulated by water-fire interactions on a background of low nutrient availability. J Biogeogr 17:403–413CrossRefGoogle Scholar
  45. Mendes IC, Fernandes MF, Chaer GM, dos Reis FB Jr (2012) Biological functioning of Brazilian Cerrado soils under different vegetation types. Plant Soil 359:183–195CrossRefGoogle Scholar
  46. Miranda AC, Miranda HS, Dias IFO, Dias BFS (1993) Soil and air temperatures during prescribed Cerrado fires in Central Brazil. J Trop Ecol 9:313–320CrossRefGoogle Scholar
  47. Miranda HS, Rocha eSEP, Miranda AC (1996) Comportamento do fogo em queimadas de campo sujo. In: Miranda HS, Saito CH, Dias BFS (eds) Impactos de queimadas em áreas de Cerrado e Restinga. ECL/UnB, Brasília, Brazil, pp 1–10Google Scholar
  48. Mistry J (2000) World Savannas. Prentice Hall, LondonGoogle Scholar
  49. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  50. Nardoto GB, Bustamante MMD (2003) Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesqui Agropecu Bras 38:955–962CrossRefGoogle Scholar
  51. Nascimento RP, d’Avila-Levy CM, Souza RF, Branquinha MH, Bon EPS, Pereira N Jr, Coehlo RRR (2005) Production and partial characterization of extracellular proteinases from Streptomyces malaysiensis, isolated from a Brazilian Cerrado soil. Arch Microbiol 184:194–198PubMedCrossRefGoogle Scholar
  52. Nemergut DR, Cleveland CC, Wieder WR, Washenberger CL, Townsend AR (2010) Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biol Biochem 42:2153–2160CrossRefGoogle Scholar
  53. Nielsen UN, Osler GHR, Campbell CD, Burslem DFRP, van der Wal R (2010) The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. J Biogeogr 37:1317–1328CrossRefGoogle Scholar
  54. Peixoto RS, Coutinho HLC, Madari B, Machado PLOA, Rumjanek NG, van Elsas JD, Seldin J, Rosado AS (2006) Soil aggregation and bacterial community structure as affected by tillage and cover cropping in the Brazilian Cerrados. Soil Tillage Res 90:16–28CrossRefGoogle Scholar
  55. Peixoto RS, Chaer GM, Franco N, Reis FB Jr, Mendes IC, Rosado AS (2010) A decade of land use contributes to changes in the chemistry, biochemistry and bacterial community structures of soils in the Cerrado. Antonie Van Leeuwenhoek 98:403–413PubMedCrossRefGoogle Scholar
  56. Petinate SD, Branquinha MH, Coelho RR, Vermelho AB, Giovanni-De-Simone S (1997) Purification and partial characterization of an extracellular serine-proteinase of Streptomyces cyaneus isolated from Brazilian Cerrado soil. J Appl Microbiol 87:557–563CrossRefGoogle Scholar
  57. Pinto AS, Bustamante MMC, da Silva MRSS, Kisselle KW, Brossard M, Kruger RH, Zepp RG, Burke RA (2006) Effects of different treatments of pasture restoration on soil trace gas emissions in the Cerrados of Central Brazil. Earth Interact 10:1–26CrossRefGoogle Scholar
  58. Pivello VR (2011) Invasões Biológicas no Cerrado Brasileiro: Efeitos da Introdução de Espécies Exóticas sobre a Biodiversidade. Ecologia.info 33Google Scholar
  59. Pivello VR, Carvalho VMC, Lopes PF, Peccinini AA, Rosso S (1999a) Abundance and distribution of native and alien grasses in a “Cerrado” (Brazilian Savanna) biological reserve1. Biotropica 31:71–82Google Scholar
  60. Pivello VR, Shida CN, Meirelles ST (1999b) Alien grasses in Brazilian savannas: a threat to the biodiversity. Biodivers Conserv 8:1281–1294CrossRefGoogle Scholar
  61. Quirino BF, Pappas GJ, Tagliaferro AC, Collevatti RG, Neto EL, da Silva MR, Bustamante MM, Kruger RH (2009) Molecular phylogenetic diversity of bacteria associated with soil of the savanna-like Cerrado vegetation. Microbiol Res 164:59–70PubMedCrossRefGoogle Scholar
  62. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  63. Rachid CTCC, Santos AL, Piccolo MC, Balieiro FC, Coutinho HLC, Peixoto RS, Tiedje JM, Rosado AS (2013) Effect of sugarcane burning or green harvest methods on the Brazilian Cerrado soil bacterial community structure. PLoS ONE 8(3):e59342PubMedCentralPubMedCrossRefGoogle Scholar
  64. Rampelotto PH, de Siqueira FA, Barboza AD, Roesch LF (2013) Changes in diversity, abundance, and structure of soil bacterial communities in Brazilian Savanna under different land use systems. Microb Ecol 66:593–607PubMedCrossRefGoogle Scholar
  65. Reatto A, Correia JR, Spera ST (1998) Solos do bioma Cerrado: aspectos pedológicos. In: de Almeida SP (ed) Cerrado: ambiente e flora. EMBRAPA, Planaltina, pp 47–86Google Scholar
  66. Resende JC (2001) A ciclagem de nutrientes em áreas de cerrado e a influência de queimadas controladas. Universidade de Brasília, BrasíliaGoogle Scholar
  67. Ribeiro JF, Walter BMT (1998) Fitofisionomias do bioma do Cerrado: os biomas do Brasil. In: de Almeida SP (ed) Cerrado: ambiente e flora. EMBRAPA, Planaltina, pp 8–166Google Scholar
  68. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290PubMedCentralPubMedGoogle Scholar
  69. Romero-Ruiz M, Etter A, Sarmiento A, Tansey K (2010) Spatial and temporal variability of fires in relation to ecosystems, land tenure and rainfall in savannas of northern South America. Global Change Biol 16(7):2013–2023CrossRefGoogle Scholar
  70. Romero-Ruiz MH, Flantua SGA, Tansey K, Berrio JC (2012) Landscape transformations in savannas of northern South America: land use/cover changes since 1987 in the Llanos Orientales of Colombia. Appl Geogr 32:766–776CrossRefGoogle Scholar
  71. Rossi CQ, Pereira MG, Loss A, Gazolla PR, Perin A, dos Anjos LHC (2013) Changes in soil C and N distribution assessed by natural δ13 C and δ15 N abundance in a chronosequence of sugarcane crops managed with pre-harvest burning in a Cerrado area of Goiás, Brazil. Agric Ecosyst Environ 170:36–44CrossRefGoogle Scholar
  72. Sankaran M, Ratnam J, Hanan NP (2004) Tree-grass coexistence in savannas revisited - insights from an examination of assumptions and mechanisms invoked in existing models. Ecol Lett 7(6):480–490CrossRefGoogle Scholar
  73. Sano EE, Rosa R, Brito JL, Ferreira LG (2010) Land cover mapping of the tropical savanna region in Brazil. Environ Monit Assess 166:113–124PubMedCrossRefGoogle Scholar
  74. Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol Syst 28:517–544CrossRefGoogle Scholar
  75. Schüle W (1990) Landscape and climate in prehistory: interactions of wildlife, man, and fire. In: Goldammer JG (ed) Fire in the tropical biota, vol 84. Springer, Berlin, pp 273–318CrossRefGoogle Scholar
  76. Souza RC, Cantão ME, Vasconcelos ATR, Nogueira MA, Hungria M (2013) Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession. Appl Soil Ecol 72:49–61CrossRefGoogle Scholar
  77. Tripathi B, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, Go R, Rahim R, Husni MHA, Chun J, Adams J (2012) Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb Ecol 64:474–484PubMedCrossRefGoogle Scholar
  78. van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310PubMedCrossRefGoogle Scholar
  79. Viana LT (2002) Comparação das dinâmicas de mineralização de nitrogênio, biomassa e estrutura das comunidades microbianas do solo em áreas de cerrado nativo e pastagem. Universidade de Brasília, BrasíliaGoogle Scholar
  80. Viana LT, Bustamante MMD, Molina M, Pinto AD, Kisselle K, Zepp R, Burke RA (2011) Microbial communities in Cerrado soils under native vegetation subjected to prescribed fire and under pasture. Pesqui Agropecu Bras 46:1665–1672CrossRefGoogle Scholar
  81. Vinhal-Freitas IC, Ferreira AS, Corrêa GF, Wendling B (2013) Land use impact on microbial and biochemical indicators in agroecosystems of the Brazilian Cerrado. Vadose Zone J 12(1):1–8Google Scholar
  82. Wells CG, Campbell RE, Debano LF, Lewis CE, Fredricksen RL, Franklin EC, Froelich RC, Dunn PH (1979) Effects of fire on soil: a state-of-knowledge review. USDA forest service general technical report WO-7, Washington, DCGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Elisa Caldeira Pires Catão
    • 2
  • Fabyano Alvares Cardoso Lopes
    • 2
  • Maria Regina Silveira Sartori da Silva
    • 3
  • Renata Henrique Santana
    • 4
  • Mercedes Maria da Cunha Bustamante
    • 3
  • Ricardo Henrique Krüger
    • 1
    Email author
  1. 1.Department of Cellular BiologyUniversity of BrasíliaBrasíliaBrazil
  2. 2.Department of Cellular Biology, Program of Microbial BiologyUniversity of BrasíliaBrasíliaBrazil
  3. 3.Department of EcologyUniversity of BrasíliaBrasíliaBrazil
  4. 4.Genomic Sciences and Biotechnology ProgramCatholic University of BrasíliaBrasiliaBrazil

Personalised recommendations