The Stochastic Time-Constrained Net Present Value Problem

  • Wolfram WiesemannEmail author
  • Daniel Kuhn
Part of the International Handbooks on Information Systems book series (INFOSYS)


The successful management of capital-intensive development and engineering projects requires a careful timing of the involved cash in- and outflows. To this end, the project management literature proposes to schedule the project activities so as to maximize their net present value (NPV), that is, the sum of all discounted cash flows. Traditionally, the literature on NPV maximization ignores the uncertainty inherent in the activity durations and cash flows. In this survey, we argue that this uncertainty should be accounted for explicitly, and we investigate the computational challenges involved in doing so. We then review the two major strands of literature on stochastic NPV maximization. The first set of papers provides optimal solutions under the assumption that the activity durations follow independent exponential distributions. The second strand of literature allows for generic distributions but focuses on suboptimal solutions. We conclude with a list of research questions that we believe deserve further attention.


Net present value Project scheduling Stochastic scheduling Uncertain cash flows Uncertain durations 


  1. Azaron A, Tavakkoli-Moghaddam R (2006) A multi-objective resource allocation problem in dynamic PERT networks. Appl Math Comput 181(1):163–174CrossRefGoogle Scholar
  2. Azaron A, Tavakkoli-Moghaddam R (2007) Multi-objective time-cost trade-off in dynamic PERT networks using an interactive approach. Eur J Oper Res 180(3):1186–1200CrossRefGoogle Scholar
  3. Azaron A, Katagiri H, Sakawa M, Kato K, Memariani A (2006) A multi-objective resource allocation problem in PERT networks. Eur J Oper Res 172(3):838–854CrossRefGoogle Scholar
  4. Benati S (2006) An optimization model for stochastic project networks with cash flows. Comput Manag Sci 3(4):271–284CrossRefGoogle Scholar
  5. Bendavid I, Golany B (2011) Predetermined intervals for start times of activities in the stochastic project scheduling problem. Ann Oper Res 186(1):429–442CrossRefGoogle Scholar
  6. Bendavid I, Golany B (2011) Optimal feeding buffers for projects or batch supply chains by an exact generalization of the newsvendor result. Ann Oper Res 189(1):25–42CrossRefGoogle Scholar
  7. Benmansour R, Elmaghraby SE, Allaoui H, Artiba A (2010) The approximation of distributions by phase-type distributions. In: Proceedings of the 3rd international conference on informations systems, logistics and supply chain, CasablancaGoogle Scholar
  8. Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, PrincetonCrossRefGoogle Scholar
  9. Bertsekas DP (2007) Dynamic programming and optimal control, vol 2. Athena Scientic, NashuaGoogle Scholar
  10. Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic programming. Athena Scientific, NashuaGoogle Scholar
  11. Bidot J, Vidal T, Laborie P, Beck JC (2009) A theoretic and practical framework for scheduling in a stochastic environment. J Sched 12(3):315–344CrossRefGoogle Scholar
  12. Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project scheduling: notation, classication, models, and methods. Eur J Oper Res 112(1):3–41CrossRefGoogle Scholar
  13. Buss AH (1995) Sequential experimentation for estimating the optimal delay of activities in PERT networks. In: Proceedings of the 1995 winter simulation conference, ArlingtonGoogle Scholar
  14. Buss AH, Rosenblatt MJ (1997) Activity delay in stochastic project networks. Oper Res 45(1):126–139CrossRefGoogle Scholar
  15. Chen W-N, Zhang J (2012) Scheduling multi-mode projects under uncertainty to optimize cash flows: a Monte Carlo ant colony system approach. J Comput Sci Technol 27(5):950–965CrossRefGoogle Scholar
  16. Colvin M, Maravelias CT (2010) Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming. Eur J Oper Res 203(1):205–215CrossRefGoogle Scholar
  17. Colvin M, Maravelias CT (2011) R&D pipeline management: task interdependencies and risk management. Eur J Oper Res 215(3):616–628CrossRefGoogle Scholar
  18. Creemers S, De Reyck B, Leus R (2009) R&D project planning with multiple trials in uncertain environments. In: Proceedings of the IEEE international conference on industrial engineering and engineering management, MacauGoogle Scholar
  19. Creemers S, Leus R, De Reyck B (2010) Project scheduling with alternative technologies: incorporating varying activity duration variability. In: Proceedings of the IEEE international conference on industrial engineering and engineering Management, MacauGoogle Scholar
  20. Creemers S, Leus R, Lambrecht M (2010) Scheduling Markovian PERT networks to maximize the net present value. Oper Res Lett 38(1):51–56CrossRefGoogle Scholar
  21. Dayanand N, Padman R (1999) On payment schedules in contractor client negotiations in projects: an overview of the problem and research issues. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications. Kluwer Academic, Dordrecht, pp 477–508CrossRefGoogle Scholar
  22. Dayanand N, Padman R (2001) Project contracts and payment schedules: the client’s problem. Manag Sci 47(12):1654–1667CrossRefGoogle Scholar
  23. Demeulemeester EL, Herroelen WS (2002) Project scheduling: a research handbook. Kluwer Academic, DordrechtGoogle Scholar
  24. De Reyck B, Leus R (2008) R&D-project scheduling when activities may fail. IIE Trans 40(4):367–384CrossRefGoogle Scholar
  25. De Reyck B, Grushka-Cockayne Y, Leus R (2007) A new challenge in project scheduling: the incorporation of activity failures. Rev Bus Econ LII(3):411–434Google Scholar
  26. Dixit AK, Pindyck RS (1994) Investment under uncertainty. Princeton University Press, PrincetonGoogle Scholar
  27. Elmaghraby SE (2001) On the optimal release time of jobs with random processing times, with extensions to other criteria. Int J Prod Econ 74(1–3):103–113CrossRefGoogle Scholar
  28. Elmaghraby SE (2005) On the fallacy of averages in project risk management. Eur J Oper Res 165(2):307–313.CrossRefGoogle Scholar
  29. Elmaghraby SE, Herroelen WS (1992) The scheduling of activities to maximize the net present value of projects. Eur J Oper Res 49(1):35–49CrossRefGoogle Scholar
  30. Elmaghraby SE, Kamburowski J (1990) On project representation and activity floats. Arab J Sci Eng 15(4B):626–637Google Scholar
  31. Elmaghraby SE, Kamburowski J (1992) The analaysis of activity networks under generalized precedence relations (GPRs). Manag Sci 38(9):1245–1263CrossRefGoogle Scholar
  32. Elmaghraby SE, Ferreira AA, Tavares LV (2000) Optimal start times under stochastic activity durations. Int J Prod Econ 64(1–3):153–164CrossRefGoogle Scholar
  33. Fazar W (1959) Program evaluation and review technique. Am Stat 13(2):10Google Scholar
  34. Ghomi SMTF, Hashemin SS (1999) A new analytical algorithm and generation of Gaussian quadrature formula for stochastic network. Eur J Oper Res 114(3):610–625CrossRefGoogle Scholar
  35. Goh J, Hall NG (2013) Total cost control in project management via satisficing. Manag Sci 59(6):1354–1372CrossRefGoogle Scholar
  36. Goldratt EM (1997) Critical chain. The North River Press, Great BarringtonGoogle Scholar
  37. Grinold RC (1972) The payment scheduling problem. Nav Res Logist Q 19(1):123–136CrossRefGoogle Scholar
  38. Gutin E, Kuhn D, Wiesemann W (2013) Interdiction games on Markovian PERT networks. Available on Optimization Online, Forthcoming, Manag SciGoogle Scholar
  39. Hagstrom JN (1988) Computational complexity of PERT problems. Networks 18(2):139–147CrossRefGoogle Scholar
  40. He Z, Wang N, Li P (2012) Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective. Ann Oper Res (published online before print)Google Scholar
  41. Heitsch H and Römisch W (2003) Scenario reduction algorithms in stochastic programming. Comput Optim Appl 24(2–3):187–206CrossRefGoogle Scholar
  42. Henrion R, Küchler C, Römisch W (2009) Scenario reduction in stochastic programming with respect to discrepancy distances. Comput Optim Appl 43(1):67–93CrossRefGoogle Scholar
  43. Herbots J, Herroelen WS, Leus R (2007) Efficient and effective solution procedures for order acceptance and capacity planning. Working paper, Department of Decision Sciences and Information Management, Katholieke Universiteit Leuven, doi:10.2139/ssrn.1089359Google Scholar
  44. Herroelen WS, Leus R (2004) Robust and reactive project scheduling: a review and classification of procedures. Int J Prod Res 42(8):1599–1620CrossRefGoogle Scholar
  45. Herroelen WS, Leus R (2005) Project scheduling under uncertainty: survey and research potentials. Eur J Oper Res 165(2):289–306CrossRefGoogle Scholar
  46. Herroelen WS, Van Dommelen P, Demeulemeester EL (1997) Project network models with discounted cash flows: a guided tour through recent developments. Eur J Oper Res 100(1):97–121CrossRefGoogle Scholar
  47. Herroelen WS, Demeulemeester E, De Reyck B (1999) A classification scheme for project scheduling. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications. Kluwer Academic, Dordrecht, pp 1–26CrossRefGoogle Scholar
  48. Ierapetritou M, Li Z (2009) Modeling and managing uncertainty in process planning and scheduling. In: Chaovalitongse W, Furman KC, Pardalos PM (eds) Optimization and logistics challenges in the enterprise. Springer, Berlin, pp 97–144CrossRefGoogle Scholar
  49. Jørgensen T, Wallace SW (2000) Improving project cost estimation by taking into account managerial flexibility. Eur J Oper Res 127(2):239–251CrossRefGoogle Scholar
  50. Kall P, Wallace SW (1994) Stochastic programming. Wiley, HobokenGoogle Scholar
  51. Kavadias S, Loch CH (2004) Project selection under uncertainty: dynamically allocating resources to maximize value. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  52. Ke H, Liu B (2005) Project scheduling problem with stochastic activity duration times. Appl Math Comput 168(1):342–353CrossRefGoogle Scholar
  53. Ke H, Liu B (2007) Project scheduling problem with mixed uncertainty of randomness and fuzziness. Eur J Oper Res 183(1):135–147CrossRefGoogle Scholar
  54. Ke H, Liu B (2010) Fuzzy project scheduling problem and its hybrid intelligent algorithm. Appl Math Model 34(2):301–308CrossRefGoogle Scholar
  55. Kelley JE Jr (1961) Critical path planning and scheduling: mathematical basis. Oper Res 9(3):296–320CrossRefGoogle Scholar
  56. Kimms A (2001) Mathematical programming and financial objectives for scheduling projects. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  57. Kolisch R, Padman R (2001) An integrated survey of deterministic project scheduling. Omega-Int J Manag S 29(3):249–272CrossRefGoogle Scholar
  58. Kulkarni VG, Adlakha VG (1986) Markov and Markov-regenerative PERT networks. Oper Res 34(5):769–781CrossRefGoogle Scholar
  59. Li Z, Ierapetritou M (2008) Process scheduling under uncertainty: review and challenges. Comput Chem Eng 32(4–5):715–727CrossRefGoogle Scholar
  60. Lock D (2007) Project management, 9th edn. Gower Publishing, BurlingtonGoogle Scholar
  61. Luenberger DG (1997) Investment science. Oxford University Press, OxfordGoogle Scholar
  62. Malcolm DG, Roseboom JH, Clark CE, Fazar W (1959) Application of a technique for research and development program evaluation. Oper Res 7(5):646–669CrossRefGoogle Scholar
  63. Maylor H (2010) Project Management, 4th ed. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  64. Meredith JR, Mantel SJ (2006) Project management: a managerial approach. Wiley, HobokenGoogle Scholar
  65. Möhring RH (2001) Scheduling under uncertainty: Bounding the makespan distribution. In: Alt H (ed) Computational discrete mathematics: advanced lectures. Springer, Berlin, pp 79–97CrossRefGoogle Scholar
  66. Nadjafi BA, Kolyaei S (2010) A multi objective Fibonacci search based algorithm for resource allocation in PERT networks. J Opt Ind Eng 3(6):13–23Google Scholar
  67. Neumann K (1999) Scheduling of projects with stochastic evolution structure. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications. Kluwer Academic, Dordrecht, pp 309–332CrossRefGoogle Scholar
  68. Neumann K, Zimmermann J (2000) Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints. Eur J Oper Res 127(2):425–443CrossRefGoogle Scholar
  69. Özdamar L (1998) On scheduling project activities with variable expenditure rates. IIE Trans 30(8):695–704Google Scholar
  70. Özdamar L, Dündar H (1997) A flexible heuristic for a multi-mode capital constrained project scheduling problem with probabilistic cash inflows. Comp Oper Res 24(12):1187–1200CrossRefGoogle Scholar
  71. Pflug G (2000) Some remarks on the value-at-risk and the conditional value-at-risk. In: Uryasev S (ed) Probabilistic constrained optimization: methodology and applications. Kluwer Academic, Dordrecht, pp 272–281CrossRefGoogle Scholar
  72. Powell WP (2011) Approximate dynamic programming: solving the curses of dimensionality, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  73. Project Management Institute (2013) A guide to the project management body of knowledge (PMBOK guide), 5th edn. Project Management Institute, Newtown SquareGoogle Scholar
  74. Puterman ML (1994) Markov decision processes: discrete stochastic dynamic programming. Wiley, HobokenCrossRefGoogle Scholar
  75. Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2(3):21–41Google Scholar
  76. Rudolph AJ, Elmaghraby SE (2009) The optimal resource allocation in stochastic activity networks via continuous time Markov chains. In: Proceedings of the international conference on industrial engineering and systems management, MontrealGoogle Scholar
  77. Russell AH (1970) Cash flows in networks. Manag Sci 16(5):357–373CrossRefGoogle Scholar
  78. Ruszczyński A, Shapiro A (2003) Stochastic programming. Elsevier, AmsterdamGoogle Scholar
  79. Schmidt CW, Grossmann IE (2000) The exact overall time distribution of a project with uncertain task durations. Eur J Oper Res 126(3):614–636CrossRefGoogle Scholar
  80. Schwindt C, Zimmermann J (2001) A steepest ascent approach to maximizing the net present value of projects. Math Method Oper Res 53(3):435–450CrossRefGoogle Scholar
  81. Shavandi H, Najafi AA, Moslehirad A (2012) Fuzzy project scheduling with discounted cash flows. Econ Comput Econ Cyb 46(1):219–232Google Scholar
  82. Shtub A (1986) The trade-off between the net present cost of a project and the probability to complete it on schedule. J Oper Manag 6(4):461–470CrossRefGoogle Scholar
  83. Slotnick SA (2011) Order acceptance and scheduling: a taxonomy and review. Eur J Oper Res 212(1):1–11CrossRefGoogle Scholar
  84. Sobel MJ, Szmerekovsky JG, Tilson V (2009) Scheduling projects with stochastic activity duration to maximize expected net present value. Eur J Oper Res 198(3):697–705CrossRefGoogle Scholar
  85. Tavares LV, Ferreira JAA, Coelho JS (1998) On the optimal management of project risk. Eur J Oper Res 107(2):451–469CrossRefGoogle Scholar
  86. Tereso AP, Araújo MMT, Elmaghraby SE (2003) Experimental results of an adaptive resource allocation technique to stochastic multimodal projects. In: Proceedings of the international conference on industrial engineering and production management, PortoGoogle Scholar
  87. Tereso AP, Araújo MMT, Elmaghraby SE (2004) Adaptive resource allocation in multimodal activity networks. Int J Prod Econ 92(1):1–10CrossRefGoogle Scholar
  88. Tereso AP, Araújo MMT, Moutinho RS, Elmaghraby SE (2008) Project management: multiple resources allocation. In: Proceedings of the international conference on engineering optimization, Rio de JaneiroGoogle Scholar
  89. Tereso AP, Barreiro D, Araújo MMT, Elmaghraby SE (2010) On the optimal resource allocation in projects considering the time value of money. In: Proceedings of the third international conference on information systems, logistics and supply chain, CasablancaGoogle Scholar
  90. Trietsch D (2005) Economically balanced criticalities for robust project scheduling and control. Working paper, ISOM Department, University of Auckland, AucklandGoogle Scholar
  91. Trietsch D (2006) Optimal feeding buffers for projects or batch supply chains by an exact generalization of the newsvendor result. Int J Prod Res 44(4):627–637CrossRefGoogle Scholar
  92. Uçal İ, Kuchta D (2011) Project scheduling to maximize fuzzy net present value. In: Proceedings of the world congress on engineering, LondonGoogle Scholar
  93. Verderame PM, Elia JA, Li J, Floudas CA (2010) Planning and scheduling under uncertainty: a review across multiple sectors. Ind Eng Chem Res 49(9):3993–4017CrossRefGoogle Scholar
  94. Wang J, Wu Z, Sun Y (2000) Optimum activity delay in stochastic activity networks. In: Proceedings of the 7th international workshop on project management and scheduling, OsnabrückGoogle Scholar
  95. Wiesemann W (2012) Optimization of temporal networks under uncertainty. Springer, BerlinCrossRefGoogle Scholar
  96. Wiesemann W, Kuhn D, Rustem B (2010) Maximizing the net present value of a project under uncertainty. Eur J Oper Res 202(2):356–367CrossRefGoogle Scholar
  97. Wiesemann W, Kuhn D, Rustem B (2012) Multi-resource allocation in stochastic project scheduling. Ann Oper Res 193(1):193–220CrossRefGoogle Scholar
  98. Wiesemann W, Kuhn D, Rustem B (2012) Robust resource allocations in temporal networks. Math Program 135(1–2):437–471CrossRefGoogle Scholar
  99. Yang KK, Tay LC, Sum CC (1995) A comparison of stochastic scheduling rules for maximizing project net present value. Eur J Oper Res 85(2):327–339CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Imperial College Business SchoolImperial College LondonLondonUK
  2. 2.Risk Analytics and Optimization ChairÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations