Advertisement

Spatial Variations in Vegetation Fires and Carbon Monoxide Concentrations in South Asia

  • Krishna Prasad Vadrevu
  • Kristofer Lasko
  • Chris Justice
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

Vegetation fires are an important source of air pollution in several regions of the world including Asia. An important question with respect to satellite retrievals of air pollutants is “how well do they capture temporal and spatial variations and how well do they relate to episodic events such as fires?” We addressed this question using MOPITT surface CO and MODIS fire retrievals. We also evaluated MODIS aerosol optical depth (AOD) as well as small mode aerosol fraction (SMAF) variations in relation to fire seasonality. Results from temporal analysis (2003–2012) of fires in Asia suggested 22 % of all fires occurring in Myanmar, followed by India (20.91 %), Indonesia (18.31 %), Thailand (9.42 %), etc. Fire frequencies were highest in northeast India and Southeast Asia countries. Further, we observed significant spatial variation and seasonality in fires in Southeast Asia. In the northern Southeast Asia, the peak fire season was during January–March whereas in the south, the fires peak is from August through October. AOD followed a similar trend as that of fires, however, small mode aerosol fraction showed some discrepancies. Locally weighted regression yielded good results between vegetation fires and CO emissions. Results showed that areas with high vegetation fires were also areas of high CO emissions, with highest spatial correlation during the month of March. Among the fire counts and FRP, the correlations varied for individual months, however, both showed significant (P < 0.001) positive correlations suggesting that either of them can be used as predictor of CO concentrations. Locally weighted regression maps revealed how the relationship between fire counts versus CO and FRP versus CO change across time and space. The study captures the influence of vegetation fires on CO pollution in Asia using satellite data.

Keywords

Vegetation fires MODIS MOPITT  Satellites Carbon Monoxide South Asia 

Notes

Acknowledgements

The authors would like to thank Dr. Louis Giglio (UMd) for the MODIS active fire data set and CMG product used in this study. This research was supported by NASA grant NNX10AU77G.

References

  1. Bonnett S, Gariavait S (2011) Seasonal variability of biomass open burning activities in the greater mekong sub-region. In: Tsuruta H, Fukuyama K (eds) Biomass burning and impacts impacts on Earth’s environment vol 15(1). Global Environmental Research, pp 31–37Google Scholar
  2. Bose S (2012) Increases and decreases in the fine mode fraction of aerosol optical depth with increasing relative humidity. Univ Illinois Urbana-Champaign: Thesis. http://hdl.handle.net/2142/29662
  3. Burrows JP, Platt U, Borrell P (2011) The remote sensing of tropospheric composition from space. Springer, New YorkCrossRefGoogle Scholar
  4. Chan LY, Chan CY, Liu HY, Christopher S, Oltmans SJ, Harris JM (2000) Case study on the biomass burning in Southeast Asia and enhancement of tropospheric ozone over Hong Kong. Geophys Res Lett 27(10):1479–1482CrossRefGoogle Scholar
  5. Chang D, Song Y (2010) Estimates of biomass burning emissions in tropical Asia based on satellite-derived data. Atmos Chem Phys 10:2335–2351CrossRefGoogle Scholar
  6. Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):596–610CrossRefGoogle Scholar
  7. Deeter MN, MOPITT Algorithm Development Team (2009) MOPITT (measurements of pollution in the troposphere) validated version 4 product user’s guide. http://www.acd.ucar.edu/mopitt/v4_users_guide_val.pdf
  8. Deeter MN, Emmons LK, Francis GL, Edwards DP, Gille JC, Warner JX, Khattatov B, Ziskin D, Lamarque JF, Ho SP, Yudin V, Attie JL, Packman D, Chen J, Mao D, Drummond JR (2003) Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J Geophys Res 108(D14):4399. doi: 10.1029/2002JD003186 CrossRefGoogle Scholar
  9. Dennis RA, Mayer J, Applegate G (2005) Fire, people and pixels: linking social science and remote sensing to understand underlying causes and impacts of fires in Indonesia. Hum Ecol 33:465–504CrossRefGoogle Scholar
  10. Drummond JR (1992) Measurements of pollution in the troposphere (MOPITT). In: Gille JC, Visconti G (eds) The use of EOS for studies of atmospheric physics. New York, North-Holland, pp 77–101Google Scholar
  11. Fotheringham A, Brunsdon SC, Charlton M (2002) Geographically weighted regression. Wiley, New YorkGoogle Scholar
  12. Fu JS, Hsu NC, Gao Y, Huang K, Li C, Lin NH, Tsay SC (2012) Evaluating the influences of biomass burning during 2006 BASE-ASIA: a regional chemical transport modeling. Atmos Chem Phys 12:3837–3855CrossRefGoogle Scholar
  13. Gadde B, Bonnet S, Menke C, Garivait S (2011) Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ Pollut 157(5):1554–1558CrossRefGoogle Scholar
  14. Giglio L, Descloitres J, Justice CO, Kaufman Y (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282CrossRefGoogle Scholar
  15. Giglio L, Csiszar I, Justice CO (2006) Global distribution and seasonality of active fires as observed with the terra and aqua moderate resolution Imaging spectroradiometer (MODIS) sensors. J Geophys Res 111(G2):G02016Google Scholar
  16. Hoelzemann JJ, Schultz MG, Brasseur GP, Granier C, Simon M (2004) Global wildland fire emission model (GWEM): evaluating the use of global area burnt satellite data. J Geophys Research 109(D14):D14S04Google Scholar
  17. Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9(3):1053–1071CrossRefGoogle Scholar
  18. Hsu NC, Herman JR, Tsay SC (2003) Radiative impacts from biomass burning in the presence of clouds during boreal spring in Southeast Asia. Geophys Res Lett 30(5):1224CrossRefGoogle Scholar
  19. Huang Y, Leung Y (2002) Analyzing regional industrialization in Jiangsu province using geographically weighted regression. J Geogr Syst 4(2):233–249CrossRefGoogle Scholar
  20. Ichoku C, Giglio L, Wooster MJ, Remer LA (2008) Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sens Environ 112(6):2950–2962CrossRefGoogle Scholar
  21. Jaenicke J, Rieley JO, Mott C, Kimman P, Siegert F (2008) Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147:151–158. doi: 10.1016/j.geoderma.2008.08.008 CrossRefGoogle Scholar
  22. Kaiser JW, Heil A, Andreae MO, Benedetti A, Chubarova N, Jones L, Morcrette JJ, Razinger M, Schultz MG, Suttie M, van der Werf GR (2012) Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9(1):527–554CrossRefGoogle Scholar
  23. Kaufman YJ, Justice CO, Flynn L, Kendall JD, Prins EM, Giglio L, Ward D, Menzel W, Setzer A (1998) Potential global fire monitoring from EOS-MODIS. J Geophys Res 103(D24):32215–32238CrossRefGoogle Scholar
  24. Kimothi MM, Jadhav RN (1998) Forest fire in the Central Himalaya: an extent direction and spread using IRS LISS-I data. Int J Remote Sens 19(12):2261−2274Google Scholar
  25. Kopacz M, Jacob DJ, Fisher JA, Logan JA, Zhang L, Megretskaia IA, Yantosca RM, Singh K, Henze DK, Burrows JP, Buchwitz M, Khlystova I, McMillan WW, Gille JC, Edwards DP, Eldering A, Thouret V, Nedelec P (2010) Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atmos Chem Phys 10(3):855–876CrossRefGoogle Scholar
  26. Lau WKM, Kim MK, Kim KM, Lee WS (2010) Enhanced surface warming and accelerated snowmelt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett 5(2):025204. doi: 10.1088/1748-9326/5/2/025204 CrossRefGoogle Scholar
  27. Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ (2007) Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J Geophys Res 112(D13):D13211CrossRefGoogle Scholar
  28. Li H, Han Z, Cheng T, Du H, Kong L, Chen J, Zhang R, Wang W (2010) Agricultural fire impacts on the air quality of Shanghai during summer harvest time. Aerosol Air Quality Res 10(2):95–101Google Scholar
  29. Miettinen J, Shi C, Liew SC (2011) Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob Change Biol 17(7):2261–2270CrossRefGoogle Scholar
  30. Monks PS, Beirle S (2011) Applications of satellite observations of tropospheric composition. In: Burrows JP, Platt U, Borrell P (eds) The remote sensing of tropospheric composition from space. Springer, Berlin, pp 365–449CrossRefGoogle Scholar
  31. Montzka SA, Krol M, Dlugokencky E, Hall B, Jöckel P, Lelieveld J (2011) Small interannual variability of global atmospheric hydroxyl. Science 331(6013):67–69CrossRefGoogle Scholar
  32. Murdiyarso D, Adiningsih ES (2007) Climate anomalies, Indonesian vegetation fires and terrestrial carbon emissions. Mitig Adapt Strat Glob Change 12(1):101–112CrossRefGoogle Scholar
  33. Nawahda A, Yamashita K, Ohara T, Kurokawa J, Yamaji K (2012) Evaluation of premature mortality caused by exposure to PM 2.5 and Ozone in East Asia: 2000, 2005, 2020. Water Air Soil Pollut 223:1–15 CrossRefGoogle Scholar
  34. Page SE, Sigert F, Rieley JO, Boehm HDV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420(6911):61−65Google Scholar
  35. Page S, Hoscilo A, Langner A, Tansey K, Siegert F, Limin S, Rieley J (2009) Tropical peatland fires in Southeast Asia. Trop Fire Ecol, 263–287Google Scholar
  36. Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Change Biol 17(2):798−818Google Scholar
  37. Pfister G, Hess PG, Emmons LK, Lamarque J-F, Wiedinmyer C, Edwards DP, Pétron G, Gille JC, Sachse GW (2005) Quantifying CO emissions from the 2004 Alaskan wildfires using MOPITT CO data. Geophys Res Lett 32:L11809. doi: 10.1029/2005GL022995 CrossRefGoogle Scholar
  38. Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56(6):709–742CrossRefGoogle Scholar
  39. Prasad KV, Badarinath KVS, Anuradha E (2008) Biophysical and anthropogenic controls of forest fires in the Deccan Plateau, India. J Environ Manag 86:1–13CrossRefGoogle Scholar
  40. Radojevic M (2003) Chemistry of forest fires and regional haze with emphasis on Southeast Asia. Pure appl Geophys 160(1):157–187 CrossRefGoogle Scholar
  41. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA 102(15):5326-5333Google Scholar
  42. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1(4):221–227CrossRefGoogle Scholar
  43. Remer L et al (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62(4):947–973CrossRefGoogle Scholar
  44. Seaton A, Godden D, MacNee W, Donaldson K (1995) Particulate air pollution and acute health effects. The Lancet 345(8943):176–178CrossRefGoogle Scholar
  45. Stohl A, Eckhardt S, Forster C, James P, Spichtinger N (2002) On the pathways and timescales of intercontinental air pollution transport. J Geophys Res 107(D23):4684. doi: 10.1029/2001JD001396 CrossRefGoogle Scholar
  46. Streets DG, Yarber KF, Woo J-H, Carmichael GR (2003) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochem Cycles 17(4):1099. doi: 10.1029/2003GB002040 CrossRefGoogle Scholar
  47. Sugi K, Theissen JL, Traber LD, Herndon DN, Traber DL (1990) Impact of carbon monoxide on cardiopulmonary dysfunction after smoke inhalation injury. Circ Res 66(1):69–75CrossRefGoogle Scholar
  48. Vadrevu KP, Badarinath KVS (2009) Spatial pattern analysis of fire events in central India—a case study. Geocarto Int 24(2):115–131Google Scholar
  49. Vadrevu KP, Anuradha E, Badarinath. KVS (2010) Fire risk evaluation using multi-criteria analysis—A case study. Environ Monitoring Assess 166(1–4):223–239. doi: 10.1007/s10661-009-0997-3
  50. Vadrevu KP, Ellicott E, Badarinath KVS, Vermote E (2011) MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, North India. Environ Pollut 159(6):1560–1569CrossRefGoogle Scholar
  51. Vadrevu KP, Ellicott E, Giglio L, Badarinath KVS, Vermote E, Justice C, Lau KW (2012a) Vegetation fires in the Himalayan region—aerosol load, black carbon emissions and smoke plume heights. Atmos Environ 47:241–251CrossRefGoogle Scholar
  52. Vadrevu KP, Csiszar I, Ellicott E, Giglio L, Badarinath KVS, Vermote E, Justice C (2012b) Hotspot Analysis of Vegetation Fires and Intensity in the Indian Region. IEEE J Sel Top Appl Earth Obs Remote Sens 99:1–15Google Scholar
  53. Vadrevu KP, Giglio L, Justice C (2013) Satellite-based analysis of fire–CO relationships from forest and agriculture residue burning (2003–2011). Atmos Environ. doi: 10.1016/j.atmosenv.2012.09.055 Google Scholar
  54. Van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF Jr (2006) Interannual variability in global biomass burning emissions from 1997–2004. Atmos Chem Phys 6:3423–3441. doi: 10.5194/acp-6-3423 CrossRefGoogle Scholar
  55. Wooster MJ, Zhang YH (2004) Boreal forest fires burn less intensely in Russia than in North America. Geophys Res Lett 31(L20505):10–1029Google Scholar
  56. Wooster MJ, Roberts G, Perry GLW, Kaufman YJ (2005) Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J Geophys Res 110:D24311–D24311CrossRefGoogle Scholar
  57. Zhang L, Li QB, Jin J, Liu H, Livesey N, Jiang JH, Mao JH, Chen D, Luo M, Chen Y (2011) Impacts of 2006 Indonesian fires and dynamics on tropical upper tropospheric carbon monoxide and ozone. Atmos Chem Phys 11:10929–10946CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Krishna Prasad Vadrevu
    • 1
  • Kristofer Lasko
    • 1
  • Chris Justice
    • 1
  1. 1.Department of Geographical SciencesUniversity of MarylandCollege ParkUSA

Personalised recommendations