Advertisement

Harbinger: An Analyzing and Predicting System for Online Social Network Users’ Behavior

  • Rui Guo
  • Hongzhi Wang
  • Lucheng Zhong
  • Jianzhong Li
  • Hong Gao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8422)

Abstract

Online Social Network (OSN) is one of the hottest innovations in the past years. For OSN, users’ behavior is one of the important factors to study. This demonstration proposal presents Harbinger, an analyzing and predicting system for OSN users’ behavior. In Harbinger, we focus on tweets’ timestamps (when users post or share messages), visualize users’ post behavior as well as message retweet number and build adjustable models to predict users’ behavior. Predictions of users’ behavior can be performed with the established behavior models and the results can be applied to many applications such as tweet crawlers and advertisements.

Keywords

Social Network User Behavior Message Timestamp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.: Characterizing user behavior in online social networks. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, pp. 49–62. ACM (2009)Google Scholar
  6. 6.
    Guo, R., Wang, H., Li, K., Li, J., Gao, H.: Cuvim: Extracting fresh information from social network. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds.) WAIM 2013. LNCS, vol. 7923, pp. 351–362. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Gyarmati, L., Trinh, T.A.: Measuring user behavior in online social networks. IEEE Network 24(5), 26–31 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rui Guo
    • 1
  • Hongzhi Wang
    • 1
  • Lucheng Zhong
    • 1
  • Jianzhong Li
    • 1
  • Hong Gao
    • 1
  1. 1.Harbin Institute of Technology HarbinHeilongjiangChina

Personalised recommendations