Rights Protection for Trajectory Streams

  • Mingliang Yue
  • Zhiyong Peng
  • Kai Zheng
  • Yuwei Peng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8422)


More and more trajectory data are available as streams due to the unprecedented prevalence of mobile positioning devices. Meanwhile, an increasing number of applications are designed to be dependent on real-time trajectory streams. Therefore, the protection of ownership rights over such data becomes a necessity. In this paper, we propose an online watermarking scheme that can be used for the rights protection of trajectory streams. The scheme works in a finite window, single-pass streaming model. It embeds watermark by modifying feature distances extracted from the streams. The fact that these feature distances can be recovered ensures a consistent overlap between the recovered watermark and the embedded one. Experimental results verify the robustness of the scheme against domain-specific attacks, including geometric transformations, noise addition, trajectory segmentation and compression.


Rights protection trajectory streams watermarking robustness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Information Hiding: A survey. Proceedings of the IEEE 87(7), 1062–1078 (1999)CrossRefGoogle Scholar
  2. 2.
    Wang, Y., Doherty, J.F., Van Dyck, R.E.: A Wavelet-based Watermarking Algorithm for Ownership Verification of Digital Images. IEEE Transaction on Image Processing 11(2), 77–88 (2002)CrossRefGoogle Scholar
  3. 3.
    Kirovski, D., Malvar, H.S.: Spread Spectrum Watermarking of Audio Signals. IEEE Transactions on Signal Processing 51(4), 1020–1033 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Langelaar, G.C., Lagendijk, R.L.: Optimal Differential Energy Watermarking of DCT Encoded Images and Video. IEEE Transactions on Image Processing 10(1), 148–158 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Doncel, V.R., Nikolaidis, N., Pitas, I.: An Optimal Detector Structure for the Fourier Descriptors Domain Watermarking of 2D Vector Graphics. IEEE Transactions on Visualization and Computer Graphics 13(5), 851–863 (2007)CrossRefGoogle Scholar
  6. 6.
    Yan, H., Li, J., Wen, H.: A Key Points-based Blind Watermarking Approach for Vector Geospatial Data. Computers, Environment and Urban Systems 35(6), 485–492 (2011)CrossRefGoogle Scholar
  7. 7.
    Wang, C.J., Peng, Z.Y., Peng, Y.W., Yu, L., Wang, J.Z., Zhao, Q.Z.: Watermarking Geographical Data on Spatial Topological Relations. Multimedia Tools Applications 57(1), 67–89 (2012)CrossRefGoogle Scholar
  8. 8.
    Jin, X., Zhang, Z., Wang, J., Li, D.: Watermarking Spatial Trajectory Database. In: Zhou, L., Ooi, B., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 56–67. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Lucchese, C., Vlachos, M., Rajan, D., Yu, P.S.: Rights Protection of Trajectory Datasets with Nearest-neighbor Preservation. The VLDB Journal 19, 531–556 (2010)CrossRefGoogle Scholar
  10. 10.
    Sion, R., Atallah, M., Prabhakar, S.: Resilient Rights Protection for Sensor Streams. In: IEEE International Conference on Very Large Databases, vol. 30, pp. 732–743 (2004)Google Scholar
  11. 11.
    Sion, R., Prabhakar, S.: Rights Protection for Discrete Numeric Streams. IEEE Transactions on Knowledge and Data Engineering 18(5), 699–714 (2006)CrossRefGoogle Scholar
  12. 12.
    Yuan, N.J., Zheng, Y., Zhang, L., Xie, X.: T-Finder: A Recommender System for Finding Passengers and Vacant Taxis. IEEE Transactions on Knowlege and Data Enginerring 25(10), 2390–2403 (2013)CrossRefGoogle Scholar
  13. 13.
    Ma, S., Zheng, Y., Wolfson, O.: T-Share: A Large-Scale Dynamic Taxi Ridesharing. In: IEEE International Conference on Data Engineering, pp. 410–421 (2013)Google Scholar
  14. 14.
    Aung, H.H., Guo, L., Tan, K.-L.: Mining sub-trajectory cliques to find frequent routes. In: Nascimento, M.A., Sellis, T., Cheng, R., Sander, J., Zheng, Y., Kriegel, H.-P., Renz, M., Sengstock, C. (eds.) SSTD 2013. LNCS, vol. 8098, pp. 92–109. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Lee, J.G., Han, J., Whang, K.Y.: Trajectory Clustering: A Partition-and-Group Framework. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 593–604 (2007)Google Scholar
  16. 16.
    Muckell, J., Hwang, J.H., Lawson, C.T., Ravi, S.S.: Algorithms for Compressing GPS Trajectory Data: An Empirical Evaluation. In: Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 402–405 (2010)Google Scholar
  17. 17.
    Chen, M., Xu, M., Franti, P.: A Fast O(N) Multiresolution Polygonal Approximation Algorithm for GPS Trajectory Simplification. IEEE Transactions on Image Processing 21, 2770–2785 (2012)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Potamias, M., Patroumpas, K., Sellis, T.: Sampling Trajectory Streams with Spatiotemporal Criteria. In: International Conference on Scientific and Statistical Database Management, pp. 275–284 (2006)Google Scholar
  19. 19.
    Muckell, J., Hwang, J.H., Patil, V., Lawson, C.T., Ravi, S.S.: SQUISH: An Online Approach for GPS Trajectory Compression. In: International Conference on Computing for Geospatial Research & Applications, p. 13 (2011)Google Scholar
  20. 20.
    Muckell, J., Olsen, P.W., Hwang, J.H., Lawson, C.T., Ravi, S.S.: Compression of Trajectory Data: A Comprehensive Evaluation and New Approach. GeoInformatica (2013), doi:10.1007/s10707-013-0184-0Google Scholar
  21. 21.
    Keogh, E., Chu, S., Hart, D., Pazzani, M.: An Online Algorithm for Segmenting Time Series. In: Proceedings of IEEE International Conference on Data Mining, pp. 289–296 (2001)Google Scholar
  22. 22.
    Douglas, D.H., Peucker, T.K.: Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature. Canadian Cartographer 10, 112–122 (1973)CrossRefGoogle Scholar
  23. 23.
    Lee, W.C., Krumm, J.: Trajectory preprocessing. In: Computing with Spatial Trajectories, pp. 3–33. Springer, New York (2011)CrossRefGoogle Scholar
  24. 24.
    Schneier, B.: Applied Cryptography. John Wiley and Sons (1996)Google Scholar
  25. 25.
    Chen, B.: Quantization Index Modulation: A Class of Provably Good Methods for Digital Watermarking and Information Embedding. IEEE Transactions on Information Theory 47(4), 1423–1443 (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: Driving directions based on taxi trajectories. In: Proc. of the 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 99–108 (2010)Google Scholar
  27. 27.
    Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proc. of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 316–324 (2011)Google Scholar
  28. 28.
    Cox, I., Miller, M., Bloom, J.: Digital watermarking. Morgan Kaufmann (2001)Google Scholar
  29. 29.
    Srinivasan, S., Dhakar, N.S.: Route-choice Modeling using GPS-based Travel Surveys (2011-008) (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mingliang Yue
    • 1
  • Zhiyong Peng
    • 1
  • Kai Zheng
    • 2
  • Yuwei Peng
    • 1
  1. 1.School of ComputerWuhan UniversityWuhanChina
  2. 2.School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations