Heterogeneous Coupling for Implicitly Described Domains

Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 98)


Modern imaging techniques yield high quality information of complex shaped microscopic structures. The Unfitted Discontinuous Galerkin method (UDG) offers an approach to solve PDEs on implicitly described domains, e.g. obtained using micro-CT imaging, without the need to construct a geometry-resolving mesh. The domain description uses a level set based formulation; still domain boundaries are incorporated explicitly. We present an extension of the UDG method to incorporate processes on manifolds in a heterogeneous domain-decomposition framework. Using an explicit reconstruction of the implicit domain boundary it is possible to couple level set based surface problems on the boundary with domain problems.



The authors thank Wolfgang Giese (HU Berlin) for providing the budding yeast model which is based on [12]. All implementations were done using the frameworks DUNE [4] and DUNE-UDG [8].


  1. 1.
    Baaijens, F.: A fictitious domain/mortar element method for fluid-structure interaction. Int. J. Numer. Methods Fluids 35(7), 743–761 (2001)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Barrett, J.W., Elliott, C.M.: Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal. 7(3), 283–300 (1987)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bastian, P., Engwer, C.: An unfitted finite element method using discontinuous Galerkin. Int. J. Numer. Method Eng. 79(12), 1557–1576 (2009)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part ii: implementation and tests in dune. Computing 82, 121–138 (2008)MATHGoogle Scholar
  5. 5.
    Boettinger, W.J., Warren, J.A., Beckermann, C, Karma, A.: Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32(1), 163–194 (2002)CrossRefGoogle Scholar
  6. 6.
    Cirak, F., Radovitzky, R.: A Lagrangian–Eulerian shell–fluid coupling algorithm based on level sets. Comput. Struct. 83(6), 491–498 (2005)CrossRefGoogle Scholar
  7. 7.
    Dziuk, G., Elliott, C.: Eulerian finite element method for parabolic pdes on implicit surfaces. Interfaces Free Bound. 10, 119–138 (2008)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Engwer, C., Heimann, F.: Dune-udg: a cut-cell framework for unfitted discontinuous galerkin methods. In: Advances in DUNE, pp. 89–100. Springer, Berlin (2012)Google Scholar
  9. 9.
    Farsad, M., Vernerey, F., Park, H.: An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials. Int. J. Numer. Method Eng. 84(12), 1466–1489 (2010)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Gerstenberger, A., Wall, W.: An extended finite element method/lagrange multiplier based approach for fluid–structure interaction. Comput. Method Appl. Mech. Eng. 197(19), 1699–1714 (2008)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Glowinski, R.: Viscous flow simulation by finite element methods and related numerical techniques. In: Progress and Supercomputing in Computational Fluid Dynamics, pp. 173–210 (1985)Google Scholar
  12. 12.
    Goryachev, A., Pokhilko, A.: Dynamics of cdc42 network embodies a turing-type mechanism of yeast cell polarity. FEBS Lett. 582(10), 1437–1443 (2008)CrossRefGoogle Scholar
  13. 13.
    Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Method Appl. Mech. Eng. 191(47–48), 5537–5552 (2002)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Rivière, B., Bastian, P.: Discontinuous galerkin methods for two-phase flow in porous media. Technical Report 2004–28, IWR (SFB 359), University of Heidelberg (2004)Google Scholar
  16. 16.
    Schiesser, W.: The Numerical Method of Lines: Integration of Partial Differential Equations. Academic, San Diego (1991)MATHGoogle Scholar
  17. 17.
    Sethian, J., Strain, J.: Crystal growth and dendritic solidification. J. Comput. Phys. 98(2), 231–253 (1992)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Teigen, K., Li, X., Lowengrub, J., Wang, F., Voigt, A.: A diffuse-interface approach for modelling transport, diffusion and adsorption/desorption of material quantities on a deformable interface. Commun. Math. Sci. 7(4), 1009–1037 (2009)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute for Computational and Applied MathematicsUniversity of MuensterMuensterGermany

Personalised recommendations