FETI Solvers for Non-standard Finite Element Equations Based on Boundary Integral Operators

  • Clemens Hofreither
  • Ulrich Langer
  • Clemens Pechstein
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 98)


We present efficient Domain Decomposition solvers for a class of non-standard Finite Element Methods. These methods utilize PDE-harmonic trial functions in every element of a polyhedral mesh, and use boundary element techniques locally in order to generate the finite element stiffness matrices. For these reasons, the terms BEM-based FEM or Trefftz-FEM are sometimes used. In the present paper, we show that Finite Element Tearing and Interconnecting (FETI) methods can be used to solve the resulting linear systems in a quasi-optimal, robust and parallel manner. An important theoretical tool are spectral equivalences between FEM- and BEM-approximated Steklov–Poincaré operators.



The authors gratefully acknowledge the financial support by the Austrian Science Fund (FWF) under the grant DK W1214, project DK4.


  1. 1.
    Farhat, C., Roux, F.X.: A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 32, 1205–1227 (1991)MATHCrossRefGoogle Scholar
  2. 2.
    Hofreither, C.: L 2 error estimates for a nonstandard finite element method on polyhedral meshes. J. Numer. Math. 19(1), 27–39 (2011)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Hofreither, C., Pechstein, C.: A rigorous error analysis of coupled FEM-BEM problems with arbitrary many subdomains. In: Apel, T., Steinbach, O. (eds.) Advanced Finite Element Methods and Applications, pp. 109–130. Springer, New York (2012)Google Scholar
  4. 4.
    Hofreither, C., Langer, U., Pechstein, C.: Analysis of a non-standard finite element method based on boundary integral operators. Electron. Trans. Numer. Anal. 37, 413–436 (2010)MATHMathSciNetGoogle Scholar
  5. 5.
    Klawonn, A., Widlund, O.B.: FETI and Neumann-Neumann iterative substructuring methods: connections and new results. Commun. Pure Appl. Math. 54(1), 57–90 (2001)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Langer, U., Steinbach, O.: Boundary element tearing and interconnecting method. Computing 71(3), 205–228 (2003)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Pechstein, C.: Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems. Springer, Heidelberg (2013)MATHCrossRefGoogle Scholar
  8. 8.
    Pechstein, C.: Shape-explicit constants for some boundary integral operators. Appl. Anal. 92(5), 949–974 (2013)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Rixen, D., Farhat, C.: A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems. Int. J. Numer. Methods Eng. 44(4), 489–516 (1999)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems – Finite and Boundary Elements. Springer, New York (2008)MATHCrossRefGoogle Scholar
  11. 11.
    Toselli, A., Widlund, O.: Domain Decoposition Methods – Algorithms and Theory. Springer, Berlin (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Clemens Hofreither
    • 1
  • Ulrich Langer
    • 2
  • Clemens Pechstein
    • 2
  1. 1.Doctoral Program “Computational Mathematics” Johannes Kepler UniversityLinzAustria
  2. 2.Institute of Computational MathematicsJohannes Kepler UniversityLinzAustria

Personalised recommendations