Advertisement

Hybrid Space–Time Parallel Solution of Burgers’ Equation

  • Rolf Krause
  • Daniel Ruprecht
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 98)

Abstract

An OpenMP-based shared memory implementation of the Parareal parallel-in-time integration scheme using explicit integrators is combined with a standard MPI-based spatial parallelization of a finite difference method into a hybrid space–time parallel scheme. The capability of this approach to achieve speedups beyond the saturation of the pure space-parallel scheme is demonstrated for the two-dimensional Burgers equation.

Keywords

Spatial Parallelization Master Thread Hybrid Space High Performance Computing System Deferred Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work is funded by the Swiss “High Performance and High Productivity Computing” initiative HP2C.

References

  1. 1.
    Bal, G., Maday, Y.: A “parareal” time discretization for non-linear PDE’s with application to the pricing of an American put. In: Pavarino, L., Toselli, A. (eds.) Recent Developments in Domain Decomposition Methods. Lecture Notes in Computational Science and Engineering, vol. 23, pp. 189–202. Springer, Berlin (2002)CrossRefGoogle Scholar
  2. 2.
    Chapman, B., Jost, G., van der Pas, R.: Using OpenMp: Portable Shared Memory Parallel Programming. Scientific and Engineering Computation Series. The MIT press, Cambridge (2008)Google Scholar
  3. 3.
    Christlieb, A.J., Haynes, R., Ong, B.W.: A parallel space-time algorithm. SIAM J. Sci. Comput. 34, C233–C248 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Croce, R., Ruprecht, D., Krause, R.: Parallel-in-space-and-time simulation of the three-dimensional, unsteady Navier-Stokes equations for incompressible flow. ICS-Preprint 2012–03 (2012)Google Scholar
  5. 5.
    Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. C. R. Acad. Sci. Ser. I Math. 332, 661–668 (2001)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Maday, Y., Turinici, G.: The parareal in time iterative solver: A further direction to parallel implementation. In: Kornhuber, R., et al. (eds.) Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 441–448. Springer, Berlin (2005)CrossRefGoogle Scholar
  9. 9.
    Minion, M.L.: A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5(2), 265–301 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming on clusters of multi-core SMP nodes. In: 17th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, pp. 427–436 (2009)Google Scholar
  11. 11.
    Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acoustic-advection system. Comput. Fluids 59, 72–83 (2012)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Trindade, J.M.F., Pereira, J.C.F.: Parallel-in-time simulation of the unsteady Navier-Stokes equations for incompressible flow. Int. J. Numer. Methods Fluids 45, 1123–1136 (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Trindade, J.M.F., Pereira, J.C.F.: Parallel-in-time simulation of two-dimensional, unsteady, incompressible laminar flows. Numer. Heat Transf. Part B 50, 25–40 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Computational ScienceUniversità della Svizzera italianaLuganoSwitzerland
  2. 2.Mathematisches InstitutHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations