Advertisement

Integrating an N-Body Problem with SDC and PFASST

  • Robert Speck
  • Daniel Ruprecht
  • Rolf Krause
  • Matthew Emmett
  • Michael Minion
  • Mathias Winkel
  • Paul Gibbon
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 98)

Abstract

Vortex methods for the Navier–Stokes equations are based on a Lagrangian particle discretization, which reduces the governing equations to a first-order initial value system of ordinary differential equations for the position and vorticity of N particles. In this paper, the accuracy of solving this system by time-serial spectral deferred corrections (SDC) as well as by the time-parallel Parallel Full Approximation Scheme in Space and Time (PFASST) is investigated. PFASST is based on intertwining SDC iterations with differing resolution in a manner similar to the Parareal algorithm and uses a Full Approximation Scheme (FAS) correction to improve the accuracy of coarser SDC iterations. It is demonstrated that SDC and PFASST can generate highly accurate solutions, and the performance in terms of function evaluations required for a certain accuracy is analyzed and compared to a standard Runge–Kutta method.

Keywords

Quadrature Point Vortex Method Kutta Scheme Parallel Efficiency Quadrature Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research is partly funded by the Swiss “High Performance and High Productivity Computing” initiative HP2C; the Director, DOE Office of Science, Office of Advanced Scientific Computing Research, Office of Mathematics, Information, and Computational Sciences, Applied Mathematical Sciences Program, under contract DE-SC0004011; and the ExtreMe Matter Institute (EMMI) in the framework of the German Helmholtz Alliance HA216. Computing resources were provided by Jülich Supercomputing Centre under project JZAM04.

References

  1. 1.
    Barnes, J.E., Hut, P.: A hierarchical \(\mathcal{O}(N\log N)\) force-calculation algorithm. Nature 324(6096), 446–449 (1986)CrossRefGoogle Scholar
  2. 2.
    Christlieb, A., Ong, B., Qiu, J.: Comments on high order integrators embedded within integral deferred correction methods. Commun. Appl. Math. Comput. Sci. 4(1), 27–56 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Christlieb, A., Macdonald, C., Ong, B.: Parallel high-order integrators. SIAM J. Sci. Comput. 32(2), 818 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cottet, G.H., Koumoutsakos, P.: Vortex Methods: Theory and Applications, 2nd edn. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  5. 5.
    Cruz, F.A., Knepley, M.G., Barba, L.A.: PetFMM-A dynamically load-balancing parallel fast multipole library. Int. J. Numer. Methods Eng. 79(13), 1577–1604 (2010)CrossRefGoogle Scholar
  6. 6.
    Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Emmett, M., Minion, M.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7(1), 105–132 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Gibbon, P., Speck, R., Karmakar, A., Arnold, L., Frings, W., Berberich, B., Reiter, D., Masek, M.: Progress in mesh-free plasma simulation with parallel tree codes. IEEE Trans. Plasma Sci. 38(9), 2367–2376 (2010). doi:10.1109/tps.2010.2055165CrossRefGoogle Scholar
  10. 10.
    Gibbon, P., Winkel, M., Arnold, L., Speck, R.: PEPC website. http://www.fz-juelich.de/ias/jsc/pepc (2012)
  11. 11.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comp. Phys. 73(2), 325–348 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Huang, J., Jia, J., Minion, M.: Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys. 214(2), 633–656 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Jülich Supercomputing Centre: JUROPA/HPC-FF website. http://www.fz-juelich.de/jsc/juropa (2012)
  14. 14.
    Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for picard integral deferred corrections methods for ordinary differential equations. BIT Numer. Math. 45(2), 341–373 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. C. R. Acad. Sci. Ser. I Math. 332, 661–668 (2001)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1(3), 471–500 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Minion, M.L.: A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5(2), 265–301 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Nievergelt, J.: Parallel methods for integrating ordinary differential equations. Commun. ACM 7(12), 731–733 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acoustic-advection system. Comput. Fluids 59, 72–83 (2012)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Salmon, J.K., Warren, M.S., Winckelmans, G.: Fast parallel tree codes for gravitational and fluid dynamical N-body problems. Int. J. Supercomput. Appl. 8, 129–142 (1994)CrossRefGoogle Scholar
  21. 21.
    Speck, R.: Generalized algebraic kernels and multipole expansions for massively parallel vortex particle methods. Ph.D. thesis, Universität Wuppertal (2011)Google Scholar
  22. 22.
    Speck, R., Gibbon, P., Hofmann, M.: Efficiency and scalability of the parallel Barnes-Hut tree code PEPC. In: Chapman, B., Desprez, F., Joubert, G.R., Lichnewsky, A., Peters, F.J., Priol, T. (eds.) Parallel Computing: From Multicores and GPU’s to Petascale. Advances in Parallel Computing, vol. 19, pp. 35–42. IOS Press, Amsterdam (2010)Google Scholar
  23. 23.
    Speck, R., Arnold, L., Gibbon, P.: Towards a petascale tree code: Scaling and efficiency of the PEPC library. J. Comput. Sci. 2, 137–142 (2011)CrossRefGoogle Scholar
  24. 24.
    Speck, R., Krause, R., Gibbon, P.: Parallel remeshing in tree codes for vortex particle methods. In: Bosschere, K.D., D’Hollander, E.H., Joubert, G.R., Padua, D., Peters, F., Sawyer, M. (eds.) Applications, Tools and Techniques on the Road to Exascale Computing. Advances in Parallel Computing, vol. 22, IOS Press, Amsterdam (2012)Google Scholar
  25. 25.
    Speck, R., Ruprecht, D., Krause, R., Emmett, M., Minion, M., Winkel, M., Gibbon, P.: A massively space-time parallel N-body solver. In: Proceedings of the SC’12 International Conference for High Performance Computing, Networking, Storage and Analysis, vol. 92, 11 pp. (2012)Google Scholar
  26. 26.
    van Rees, W.M., Leonard, A., Pullin, D.I., Koumoutsakos, P.: A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers. J. Comput. Phys. 230, 2794–2805 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Winkel, M., Speck, R., Hübner, H., Arnold, L., Krause, R., Gibbon, P.: A massively parallel, multi-disciplinary Barnes-Hut tree code for extreme-scale N-body simulations. Comput. Phys. Commun. 183(4), 880–889 (2012)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Robert Speck
    • 1
  • Daniel Ruprecht
    • 1
    • 5
  • Rolf Krause
    • 1
  • Matthew Emmett
    • 2
  • Michael Minion
    • 3
  • Mathias Winkel
    • 4
  • Paul Gibbon
    • 4
  1. 1.Institute of Computational ScienceUniversità della Svizzera italianaLuganoSwitzerland
  2. 2.Lawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Institute for Computational and Mathematical EngineeringStanford UniversityStanfordUSA
  4. 4.Jülich Supercomputing CentreJülichGermany
  5. 5.Mathematisches InstitutHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations