The Parareal in Time Algorithm Applied to the Kinetic Neutron Diffusion Equation

  • A.-M. Baudron
  • J.-J. Lautard
  • Y. Maday
  • O. Mula
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 98)


The parareal in time algorithm is a time domain decomposition method for the approximation of transient problems. Its implementation in a parallel fashion allows for significant speed-ups in the computing time and opens the door to long time computations that involve accurate propagators. In this work, we first propose to overview the different strategies for the parallelization of the algorithm. We will then study the speed-up provided by parareal on a concrete example: the kinetic neutron diffusion equation in a nuclear reactor core. Implementations have been carried out with the MINOS solver, which is a tool developed at CEA in the framework of the APOLLO3Ⓡproject. As a conclusion, we will discuss the possibility of using neutron diffusion as a coarse propagator for neutron transport.


Time Algorithm Domain Decomposition Kinetic Transport Parareal Iteration Energy Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the joint research program MANON between CEA-Saclay and University Pierre et Marie Curie-Paris 6.


  1. 1.
    Aubanel, E.: Scheduling of tasks in the parareal algorithm. Parallel Comput. 37, 172–182 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Baffico, L., Bernard, S., Maday, Y., Turinici, G., Zérah, G.: Parallel-in-time molecular-dynamics simulations. Phys. Rev. E 66, 057701 (2002)CrossRefGoogle Scholar
  3. 3.
    Bal, G., Maday, Y.: A “parareal” time discretization for non-linear PDE’s with application to the pricing of an American put. In: Recent Developments in Domain Decomposition Methods, vol. 23, pp. 189–202. Springer, Berlin (2002)Google Scholar
  4. 4.
    Baudron, A.M., Lautard, J.J.: A simplified P n solver for core calculation. Nucl. Sci. Eng. 155, 250–263 (2007)Google Scholar
  5. 5.
    Baudron, A.M., Lautard, J.J., Riahi, K., Maday, Y., Salomon, J.: Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model (submitted)Google Scholar
  6. 6.
    Dautray, R., Lions, J.L.: Analyse mathématique et calcul numérique. Masson, Cambridge (1984)Google Scholar
  7. 7.
    Jamelot, E., Baudron, A.M., Lautard, J.J.: Domain decomposition for the SPN solver MINOS. Transp. Theory Stat. Phys. 41(7), 495–512 (2012)CrossRefzbMATHGoogle Scholar
  8. 8.
    Langenbuch, S., Maurer, W., Werner, W.: Coarse-mesh flux expansion method for the analysis of space-time effects in large light water reactor cores. Nucl. Sci. Eng. 63, 437–456 (1977)Google Scholar
  9. 9.
    Lions, J., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps pararéel. C. R. Acad. Sci. Paris Série I 332, 661–668 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Reuss, P.: Précis de neutronique. EDP Sciences, Collection Génie Atomique (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A.-M. Baudron
    • 1
    • 2
  • J.-J. Lautard
    • 1
    • 2
  • Y. Maday
    • 2
    • 3
    • 4
    • 5
  • O. Mula
    • 1
    • 2
    • 3
  1. 1.C.E.A, CEA Saclay - DEN/DANS/DM2S/SERMA/LLPRGif-Sur-Yvette CedexFrance
  2. 2.LRC MANON, Laboratoire de Recherche Conventionnée, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLLLyonFrance
  3. 3.UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis LionsParisFrance
  4. 4.Institut Universitaire de FranceParisFrance
  5. 5.Division of Applied MathsBrown UniversityProvidenceUSA

Personalised recommendations