Skip to main content

Domain Decomposition for Boundary Integral Equations via Local Multi-Trace Formulations

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXI

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 98))

Abstract

We review the ideas behind and the construction of so-called local multi-trace boundary integral equations for second-order boundary value problems with piecewise constant coefficients. These formulations have received considerable attention recently as a promising domain-decomposition approach to boundary element methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As usual, \(H(\varDelta,\varOmega ):=\{ U \in H^{1}(\varOmega ):\,\varDelta U \in L^{2}(\varOmega )\}\).

  2. 2.

    Fraktur font is used to designate functions in the Cauchy trace space, whereas Roman typeface is reserved for Dirichlet traces, and Greek symbols for Neumann traces.

  3. 3.

    By Cauchy trace spaces we mean combined Dirichlet and Neumann traces.

References

  1. Boubendir, Y., Bendali, A., Fares, M.B.: Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method. Int. J. Numer. Methods Eng. 73(11), 1624–1650 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boubendir, Y., Antoine, X., Geuzaine, C.: A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 231(2), 262–280 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Claeys, X., Hiptmair, R., Jerez-Hanckes, C.: Multi-trace boundary integral equations. Report 2012–20, SAM, ETH Zürich, Zürich, Switzerland (2012). Contribution to “Direct and Inverse Problems in Wave Propagation and Applications”, Graham, I., Langer, U., Sini, M., Melenk, M. (eds.) De Gruyter (2013)

    Google Scholar 

  4. Després, B.: Domain decomposition method and the Helmholtz problem. In: Mathematical and Numerical Aspects of Wave Propagation Phenomena (Strasbourg, 1991), pp. 44–52. SIAM, Philadelphia (1991)

    Google Scholar 

  5. Dolean, V., Gander, M.J., Gerardo-Giorda, L.: Optimized Schwarz methods for Maxwell’s equations. SIAM J. Sci. Comput. 31(3), 2193–2213 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  6. Gander, M., Magoules, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholz equation. SIAM J. Sci. Comput. 24(1), 38–60 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gander, M.J., Halpern, L., Magoulès, F.: An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation. Int. J. Numer. Methods Fluids 55(2), 163–175 (2007)

    Article  MATH  Google Scholar 

  8. Hiptmair, R., Jerez-Hanckes, C.: Multiple traces boundary integral formulation for Helmholtz transmission problems. Adv. Appl. Math. 37(1), 39–91 (2012)

    MATH  MathSciNet  Google Scholar 

  9. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008)

    Google Scholar 

  10. Lions, J.L.: Équations différentielles opérationnelles et problèmes aux limites. Die Grundlehren der mathematischen Wissenschaften, Bd. 111. Springer, Berlin (1961)

    Google Scholar 

  11. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  12. Peng, Z., Lee, J.: A scalable nonoverlapping and nonconformal domain decomposition method for solving time-harmonic Maxwell equations in \(\mathbb{R}^{3}\). SIAM J. Sci. Comput. 34(3), 1266–1295 (2012)

    Article  MathSciNet  Google Scholar 

  13. Peng, Z., Wang, X.C., Lee, J.F.: Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects. IEEE Trans. Antennas Propag. 59(9), 3328–3338 (2011)

    Article  MathSciNet  Google Scholar 

  14. Peng, Z., Lim, K.H., Lee, J.F.: Computations of electromagnetic wave scattering from penetrable composite targets using a surface integral equation method with multiple traces. IEEE Trans. Antennas Propag. 61(1), 256–270 (2013)

    Article  MathSciNet  Google Scholar 

  15. Peng, Z., Lim, K.H., Lee, J.F.: Non-conformal domain decompositions for solving large multiscale electromagnetic scattering problems. Proc. IEEE 101(2), 298–319 (2013)

    Article  Google Scholar 

  16. Sauter, S., Schwab, C.: Boundary Element Methods. Springer Series in Computational Mathematics, vol. 39. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hiptmair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hiptmair, R., Jerez-Hanckes, C., Lee, JF., Peng, Z. (2014). Domain Decomposition for Boundary Integral Equations via Local Multi-Trace Formulations. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_4

Download citation

Publish with us

Policies and ethics