Advertisement

The Nexus Approach to Managing Water, Soil and Waste under Changing Climate and Growing Demands on Natural Resources

  • Rattan Lal
Chapter

Abstract

The human population has increased more than a thousand times from 2–20 million at the dawn of settled agriculture about 10–12 millennia ago to 7.2 billion in 2013. It is projected to reach 9.6 billion by 2050 and ~11 billion by 2100 (UN in World population prospects: The 2012 revision. UN Department of Economic and Projection Section, New York, 2012)

Keywords

Bioregenerative agriculture Extraterrestrial farming Food-energy-water-waste nexus Poverty-environment nexus Skyfarming Soil-climate nexus Sustainable Space agriculture Water-soil-waste nexus 

References

  1. Allan, J. A. (1994). Overall perspectives on countries and regions. In P. Rogers & P. Lydon (Eds.), Water in the Arab world: Perspectives and prognoses (pp. 65–100). Cambridge: Harvard University.Google Scholar
  2. Allan, J. A. (2006a). Beyond the watershed: Avoiding the dangers of hydro-centricity and informing public policy. In H. Shuval & H. Dweik (Eds.), Water resources in the middle East: Israel-Palestinian water issues—from conflict to cooperation (pp. 33–40). Berlin: Springer.Google Scholar
  3. Allan, J. A. (2006b). Virtual water-part of an invisible synergy that ameliorates water scarcity. In L. Martínez-Cortina, P. Rogers, & M. Llamas (Eds.), Water crisis—myth or reality? (pp. 131–150). London: Taylor and Francis.Google Scholar
  4. Allan, T. (1993). Fortunately there are substitutes for water—otherwise our hydropolitical futures would be impossible. In Proceedings of the conference on priorities for water resources allocation and management, pp. 13–26.Google Scholar
  5. Anonymous. (2012). Combating climate change: net benefits. The economist, pp. 89–90 17th March 2012.Google Scholar
  6. Aydogan-Cremaschi, S., Orcun, S., Blau, G., Pekny, J. F., & Reklaitis, G. V. (2009). A novel approach for life-support-system design for manned space missions. Acta Astronautica, 65, 330–346.CrossRefGoogle Scholar
  7. Ayers, J. M., & Huq, S. (2009). The value of linking mitigation and adaptation: A case study of Bangladesh. Environmental Management, 43(5), 753–764.CrossRefGoogle Scholar
  8. Babayan, M., Javaheri, M., Tavassoli, A., & Esmaeilian, Y. (2012). Effects of using wastewater in agricultural production. African Journal Pharmacy Pharmaco, 6(1), 1–6.CrossRefGoogle Scholar
  9. Bai, A., Stunde, L., Barsony, P., Feher, M., Jobbagy, P., Herpergel, Z., et al. (2012). Algae production on pig sludge. Agronomy Sustainable Development, 32, 611–618.CrossRefGoogle Scholar
  10. Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Proxy global assessment of land degradation. Soil Use and Management, 24, 223–234.CrossRefGoogle Scholar
  11. Balmer, A. & Martin, P. (2008). Synthetic biology: Social and ethical challenges. University of Nottingham, Nottingham, UK Institute for Science and Society. Retrieved Oct 1, 2013, from http://www.bbsrc.ac.uk/web/files/reviews/0806_synthetic_biology.pdf
  12. Baziliana, M., Rognerb, H., Mark Howellsc, M., et al. (2011). Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy, 39(12), 7896–7906.CrossRefGoogle Scholar
  13. Beal, C. D., Bertone, E., & Stewart, R. A. (2012). Evaluating the energy and carbon reductions resulting from resource-efficient household stock. Energy Buildings, 55, 422–432.CrossRefGoogle Scholar
  14. Beddington, J. R., Asaduzzaman, M., Clark, M. E., Fernández Bremauntz, A., Guillou, M. D., Howlett, D. J. B., et al. (2012). What next for agriculture after Durban? Science, 335, 289–290.CrossRefGoogle Scholar
  15. Bertol, D. (2006). Farming the land and sky: Art meets cosmology in a sustainable environment. Leonardo, 39(2), 125–130.CrossRefGoogle Scholar
  16. Bingham, G. E., Jones, S. B., Or, D., Podolski, I. G., Levinskikh, M. A., Dandolov, I., et al. (2000). Microgravity effects on water supply and substrate properties in porous matrix root support systems. Acta Astronautica, 47, 839–848.CrossRefGoogle Scholar
  17. Carter, M. S., Hauggaard-Nielsen, H., Heiske, S., Jensen, M., Thomsen, S. T., Schmidt, J. E., et al. (2012). Consequences of field N2O emissions for the environmental sustainability of plant-based biofuels produced within an organic farming system. Global Change Biology Bioenergy, 4(4), 435–452.CrossRefGoogle Scholar
  18. CEC (California Energy Commission). (2005). California’s water-energy relationship, final staff report (Sacramento: CEC). Retrieved Oct 1, 2013, from http://www.energy.ca.gov/2005publications/CEC-700-2005-011/CEC-700-2005-011-SF.PDF
  19. Charawatchai, N., Nuengjamnog, C., Rachdawong, P., & Otterpohl, R. (2008). Potential study of using earthworms as an enhancement to treat high strength wastewater. Thai Journal Veterinary Medicine, 37, 25–32.Google Scholar
  20. Cheong, L. R. N., Kwong, K. F. N. K., Ah Koona, P. D., & Du Preezb, C. C. (2009). Changes in an inceptisol of mauritius after rock removal for sugar cane production. Soil and Tillage Research, 104(1), 88–96.CrossRefGoogle Scholar
  21. Cowie, A., Eckard, R., & Eady, S. (2012). Greenhouse gas accounting for inventory, emissions trading and life cycle assessment in the land-based sector: A review. Crop Pasture Science, 63(3), 284–296.CrossRefGoogle Scholar
  22. Dasgupta, S., Deichmann, U., Meisner, C., & Wheeler, D. (2001). Where is the poverty-environment nexus? Evidence from Cambodia, Lao PDR, and Vietnam. World Development, 33(4), 617–638.CrossRefGoogle Scholar
  23. Davidson, O., Halsnaes, K., Huq, S., Kok, M., Metz, Sokona, Y., & Verhagen, J. (2003). The development and climate nexus: the case of sub-Saharan Africa. Climate Policy, 3SI, S97–S113.Google Scholar
  24. Despomer, D. (2009). The rise of vertical farms. Scientific American, 301, 80–87.CrossRefGoogle Scholar
  25. Diamond, J. M. (2005). Collapse: How societies choose to fail or succeed?. New York: Viking Press.Google Scholar
  26. Dinuccio, E., Gioelli, F., Balsari, P., & Dorno, N. (2012). Ammonia losses from the storage and application of raw and chemo-mechanically separated slurry. Agro Ecosystem Environment, 153, 16–23.CrossRefGoogle Scholar
  27. FAO. (2012). The state of food insecurity in the World 2012. Rome, Italy: FAO. Retrieved Oct 1, 2013, from http://www.fao.org/publications/sofi/en/
  28. Finstein, M. S., Hogan, J. A., Sager, J. C., Cowan, R. M., & Strom, P. F. (1999a). Composting on Mars or the moon: II. Temperature feedback control with top-wise introduction of waste material and air. Life Support & Biosphere Science, 6, 181–191.Google Scholar
  29. Finstein, M. S., Strom, P. F., Hogan, J. A., & Cowan, R. M. (1999b). Composting on Mars or the moon: I. comparative evaluation of process design alternatives. Life Support Biosphere Science, 6, 169–179.Google Scholar
  30. Fischetti, M. (2008). Cruise ships: How they sail skyscrapers around the world. Scientific American, 229(1), 94–95.CrossRefGoogle Scholar
  31. Foley, J. A. Foley, Ramankutty, N., Brauman, K. A., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342. DOI:  10.1038/nature10452
  32. Garcia-Ruiz, R., Ochoa, M. V., Belén Hinojosa, M., & Gómez-Muñoz, B. (2012). Improved soil quality after 16 years of olive mill pomace application in olive oil groves. Agronomy for Sustain Development, 32(3), 803–810.CrossRefGoogle Scholar
  33. Gentleman, D. J. (2011). Water|energy energy|water. Environment Science Technology, 45(10), 4194.CrossRefGoogle Scholar
  34. Gerbens-Leenes, P. W., Hoekstra, A. Y., & van der Meer, Th. (2009). The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecological Economics, 684, 1052–1060.CrossRefGoogle Scholar
  35. Germer, J., Sauerborn, J., Folkard Asch, F., et al. (2011). Skyfarming an ecological innovation to enhance global food security. Journal für Verbraucherschutz und Lebensmittelsicherheit, 6(2), 237–251.CrossRefGoogle Scholar
  36. Grotzinger, J. (2009). Beyond water on Mars. Nature Geoscience, 2, 231–233.CrossRefGoogle Scholar
  37. Hall, M. R., West, J., Sherman, B., Lane, J., & de Haas, D. (2011). Long-term trends and opportunities for managing regional water supply and wastewater greenhouse gas emissions. Environment Science Technology, 45(12), 5434–5440.CrossRefGoogle Scholar
  38. Hamdy, A., Ragab, R., & Scarascia-Mugnozza, E. (2003). Coping with water scarcity: Water saving and increasing water productivity. Irrigation and Drainage: Special issue: 18th ICID international congress, Montreal, 2002 52(1), 3–20.Google Scholar
  39. Hand, E. (2009). Lunar impact tosses up water and stranger stuff. Nature. DOI:  10.1038/news.(2009)1087
  40. Hanjra, M. A., Blackwell, J., Carr, G., Zhang, F., & Jackson, T. M. (2012). Wastewater irrigation and environmental health: Implications for water governance and public policy. International Journal of Hygiene Environment Health, 215(3), 255–269.CrossRefGoogle Scholar
  41. Haq, A. H. M. R., & Nawaz, K. W. (2009). Soil-less agriculture gains ground. LEISA Magazine, 25(1), 34–35.Google Scholar
  42. Hardy, L., Garrido, A., & Juana, L. (2012). Evaluation of Spain’s water-energy nexus. International Journal Water Resource Development, 28(1), 151–170.CrossRefGoogle Scholar
  43. Harmel, R. D., Smith, D. R., Haney, R. L., & Dozier, M. (2009). Nitrogen and phosphorus runoff from cropland and pasture fields fertilized with poultry litter. Journal of Soil and Water Conservation, 64(6), 400–412.CrossRefGoogle Scholar
  44. Helnse, R., Jones, S. B., Steinberg, S. L., Tuller, M., & Or, D. (2007). Measurements and modeling of variable gravity effects in water distribution and flow in unsaturated porous media. Soil Science Social Am, 6, 713–724.Google Scholar
  45. Hightower, M. (2011). Energy meets water. Mechanical Engineering., pp. 34–39 Jul 2011.Google Scholar
  46. Hirai, H., & Kitaya, Y. (2009). Effects of gravity on transpiration of plant leaves. Annals of the New York Academy of Science, 1161, 166–172.CrossRefGoogle Scholar
  47. Hoekstra, A. Y., & Chapagain, A. K. (2007). Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resource Management, 21(1), 35–48.CrossRefGoogle Scholar
  48. Hoson, P. I., Kamisaka, C. I., Wakabayashi, K., Soga, K., Tabuchi, A., Tokumoto, H., et al. (2000). Growth regulation mechanisms in higher plants under microgravity conditions- changes in cell wall metabolism. Biology Science Space, 14, 75–96.CrossRefGoogle Scholar
  49. Hossner, L. R., Ming, D. W., Henninger, D. L., & Allen, E. R. (1991). Lunar outpost agriculture. Endeavour (New Series), 15, 79–85.CrossRefGoogle Scholar
  50. Hussey, K., & Pittock, J. (2012). The energy-water nexus: managing the links between energy and water for a sustainable future. Ecology Social, 17, 31.CrossRefGoogle Scholar
  51. Irfanullah, H. M., Azad, M. A. K., Wahed, M. K., & Wahed, M. A. (2011). Floating gardening in Bangladesh: A means to rebuild lives after devastating flood. Indian Journal of Traditional Knowledge, 10(1), 31–38.Google Scholar
  52. Ivanova, T. N., Bercovich, Y. A., Mashinskiy, A. L., & Meleshko, G. I. (1992). The first “space” vegetables have been grown in the “SVET” greenhouse by means of controlled environmental conditions. Microgravity Quartely, 2, 109–114.Google Scholar
  53. Jacobsen, S.E., Sorensen, M., Pedersen, S.M., & Weiner, J. (2013). Feeding the world: Genetically modified crops verses agricultural biodiversity. Agronomy Sustainable Devlopment DOI:  10.1007/s13593-013-0138-9
  54. Johnson, H., Hochmuth, G.J., & Maynard, M.N. (1985). Soilless culture of greenhouse vegetables. Florida cooperative extension bulletin 218.Google Scholar
  55. Jones, S. B., & Or, D. (1998). A capillary-driven root module for plant growth in microgravity. Advances in Space Research, 22, 1407–1412.CrossRefGoogle Scholar
  56. Jones, S. B., & Or, D. (1999). Microgravity effects on water flow and distribution in unsaturated porous media: analyses of flight experiments. Water Resources Research, 35, 929–942.CrossRefGoogle Scholar
  57. Kanazawa, S., Ishikawa, Y., Tomita-Yokotani, K., Hashimoto, H., Kitaya, Y., Yamashita, M., et al. (2008). Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria. Advances in Space Research, 41, 696–700.CrossRefGoogle Scholar
  58. Khan, S., Rana, T., Hanjra, M. A., & Zirilli, J. (2009). Water markets and soil salinity nexus: Can minimum irrigation intensities address the issue? Agriculture Water Management, 96(3), 493–503.CrossRefGoogle Scholar
  59. Kintisch, E. (2013). U.S. Carbon plan relies on uncertain capture technology. Science, 341, 1438–1439.CrossRefGoogle Scholar
  60. Kong, D., Shan, J., Iacoboni, M., & Maguin, S. R. (2012). Evaluating greenhouse gas impacts of organic waste management options using life cycle assessment. Waste Management Resource, 30(8), 800–812.CrossRefGoogle Scholar
  61. Kumar, M. D., & Singh, O. P. (2005). Virtual water in global food and water policy making: Is there a need for rethinking. Water Resource Management, 19(6), 759–789.CrossRefGoogle Scholar
  62. Lackner, K. S., & Brennan, S. (2009). Envisioning carbon capture and storage: Expanded possibilities due to air capture, leakage insurance, and C-14 monitoring. Climatic Change, 96(3), 357–378.CrossRefGoogle Scholar
  63. Lal, R. (2008). Laws of sustainable soil management. Agronomy of Sustainable Development, 29, 7–9.CrossRefGoogle Scholar
  64. Lal, R., & Augustine, B. (2011). Carbon sequestration in Urban ecosystems. Dordrecht, Netherlands: Springer.Google Scholar
  65. Lal, R. (2013). Beyond sustainable intensification. In SSSA conference, Tampa, FL 3–6 November 2013.Google Scholar
  66. Laurenson, S., Bolan, N. S., Smith, E., & McCarthy, M. (2012). Review: Use of recycled wastewater for irrigating grapevines. Australian Journal of Grape and Wine Research, 18(1), 1–10.CrossRefGoogle Scholar
  67. Li, F., Behrendt, J., Wichmann, K., & Otterpohl, R. (2008). Resources and nutrients oriented grey water treatment for non-potable reuses. Water Science and Technology, 57, 1901–1907.CrossRefGoogle Scholar
  68. Li, F., Wichmann, K., & Otterpohl, R. (2009a). Evaluation of appropriate technologies for grey water treatments and reuses. Water Science and Technology, 59, 249–260.CrossRefGoogle Scholar
  69. Li, F., Wichmann, K., & Otterpohl, R. (2009b). Review of the technological approached for grey water treatment and reuses. Science of the Total Environment, 407, 3439–3449.CrossRefGoogle Scholar
  70. Lin, H. (2003). Hydropedology: Bridging disciplines, scales and data. Vadose Zone Journal, 2, 1–11.Google Scholar
  71. Lin, H. S., Kogelmann, W., Walker, C., & Bruns, M. A. (2005). Soil moisture patterns in a forested catchment: A hydropedological perspective. Geoderma, 131(3–4), 345–368.Google Scholar
  72. Lin, H. S., Bouma, J., Pachepsky, Y., Western, A., Thompson, J., Van Genuchten, R., et al. (2006). Hydropedology: Synergistic integration of pedology and hydrology. Water Resources Research, 42, W05301. doi: 10.1029/2005WR004085.CrossRefGoogle Scholar
  73. Lindstrom, A., Granit, J., & Weinberg, J. (2012). Large-scale water storage in the water, energy and food nexus: perspectives on benefits, risks, and best practices. SIWI Paper 21. Stockholm: SIWI.Google Scholar
  74. Loucks, D. P., & Jia, H. F. (2012). Managing water for life. Front. Environ. Sci. Engin., 6(2), 255–264.CrossRefGoogle Scholar
  75. Maggi, F., & Pallud, C. (2010a). Martian base agriculture: The effect of low gravity on water flow: nutrient cycles, and microbial biomass dynamics. Advances in Space Research, 46, 1257–1265.CrossRefGoogle Scholar
  76. Maggi, F., & Pallud, C. (2010b). Space agriculture in micro- and hypo-gravity: A comparative study of soil hydraulics and biogeochemistry in a cropping unit on Earth, Mars, the Moon and the space station. Planetary and Space Science, 58, 1996–2007.CrossRefGoogle Scholar
  77. McKinsey & Company. (2009). Charting our water future: economic frameworks to inform decision-making. Retrieved Oct 1, 2013, from http://www.mckinsey.com/App_Media/Reports/Water/Charting_Our_Water_Future_Exec%20Summary_001.pdf.
  78. Mekonnen, M. M., & Hoekstra, A. Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15, 401–415.CrossRefGoogle Scholar
  79. Morrow, R. C., Bula, R. J., Tibbitts, T. W., & Dinauer, W. R. (1994). The astroculture flight experiment series, validating technologies for growing plants in space. Advances in Space Research, 14, 29–37.CrossRefGoogle Scholar
  80. Mu, J., & Khan, S. (2009). The effect of climate change on the water and food nexus in China. Food Security, 1(4), 413–430.CrossRefGoogle Scholar
  81. Munnoli, P. M., & Bhosle, S. (2011). Water-holding capacity of earthworms’ vermicompost made of sugar industry waste (press mud) in mono- and polyculture vermireactors. Environmentalist, 31, 394–400.CrossRefGoogle Scholar
  82. Musee, N. (2011). Nanotechnology risk assessment from a waste management perspective: Are the current tools adequate? Human and Experimental Toxicology, 30(8), 820–835.CrossRefGoogle Scholar
  83. Nelson, M., Dempster, W. F., & Allen, J. P. (2008). Integration of lessons from recent research for “Earth to Mars” life support systems. Advances in Space Research, 41, 675–683.CrossRefGoogle Scholar
  84. Novotny, V. (2011). Water and energy link in the cities of the future—achieving net zero carbon and pollution emissions footprint. Water Science and Technology, 63(1), 184–190.CrossRefGoogle Scholar
  85. OECD. (2010). Sustainable management of water resources in agriculture. France: OECD. Retrieved Oct 1, 2013, from http://www.oecd.org/greengrowth/sustainable-agriculture/49040929.pdf
  86. Palhares, J. C. P., Guidoni, A. L., Steinmetz, R. L. R., Mulinari, M. R., & Sigua, G. G. (2012). Impacts of mixed farms on water quality of Pinhal river sub-basin, Santa Catarina Brazil. Archivos de Zootecnia, 61, 493–504.CrossRefGoogle Scholar
  87. Podolsky, I., & Mashinsky, A. (1994). Peculiarities of moisture transfer in capillary-porous soil substitutes during space flight. Advances in Space Research, 14, 39–46.CrossRefGoogle Scholar
  88. Porterfield, D. M. (2002). The biophysical limitations in physiological transport and exchange in plants grown in microgravity. Journal of Plant Growth Regulation, 21, 177–190.CrossRefGoogle Scholar
  89. Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1), 5–24.CrossRefGoogle Scholar
  90. Puget, P., Lal, R., Izaurralde, C., et al. (2005). Stock and distribution of total and corn-derived soil organic carbon in aggregate and primary particle fractions for different land use and soil management practices. Soil Science, 170(4), 256–279.CrossRefGoogle Scholar
  91. Qadir, M., Sharma, B. R., Bruggeman, A., Choukr-Allah, R., & Karejeh, F. (2007). Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agricultural Water Management, 87(1), 2–22.CrossRefGoogle Scholar
  92. Rahman M. Z. & Mikuni H. (1999). Agricultural development and sustainability. An Inevitable Nexus. Journal of Faculty Applied Biology Science, 38(1), 1–23. Hiroshima University.Google Scholar
  93. Rockström, J., Steffen, W., Noone, K., et al. (2009). Planetary boundaries: Exploring the safe operating space for humanity. Ecology Social, 14(2). Retrieved Oct 1, 2013, from http://www.ecologyandsociety.org/vol14/iss2/art32/
  94. Rosegrant, M. W., & Cai, X. (2001). Water scarcity and food security: Alternative futures for the 21st century. Water Science and Technology, 43(4), 61–70.Google Scholar
  95. Salisbury, F. B. (1992). Some challenges in designing a lunar, Martian, or microgravity CELSS. Acta Astronautica, 27, 211–217.CrossRefGoogle Scholar
  96. Schnoor, J. L. (2011). Water-energy nexus. Environmental Science Technology, 45(12), 5065.CrossRefGoogle Scholar
  97. Schoeneberger, P. J., & Wysocki, D. A. (2005). Hydrology of soils and deep regolith: A nexus between soil geography, ecosystems and land management. Geoderma, 126(1–2), 117–128.CrossRefGoogle Scholar
  98. Schwalb, M., Rosevear, C., Chin, R., & Barrington, S. (2011). Food waste treatment in a community center. Waste Management, 31(7), 1570–1575.CrossRefGoogle Scholar
  99. Scott, C. A., Pierce, S. A., Pasqualetti, M. J., Jones, A. L., Montz, B. E., & Hoover, J. H. (2011). Policy and institutional dimensions of the water-energy nexus. Energy Policy, 39(10), 6622–6630.CrossRefGoogle Scholar
  100. Shi, A. Z., Koh, L. P., & Tan, H. T. W. (2009). The biofuel potential of municipal solid waste. Global Change Biology Bioenergy, 1(5), 317–320.CrossRefGoogle Scholar
  101. Silalertruksa, T., & Gheewala, S. H. (2011). Long-term bioethanol system and its implications on GHG emissions: A case study of Thailand. Environmental Science Technology, 45(11), 4920–4928.CrossRefGoogle Scholar
  102. Silverstone, S., Nelson, M., Alling, A., & Allen, J. (2003). Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base. Advances in Space Research, 31, 69–75.CrossRefGoogle Scholar
  103. Small Planet Institute. (2013). Measuring hunger: A response to the FAO. Retrieved Oct 1, 2013, from http://www.ase.tufts.edu/gdae/Pubs/rp/GC60June21Wise.pdf
  104. Smit, W., & Parnell, S. (2012). Urban sustainability and human health: An African perspective. Current Opinion Environment Sustainable, 4(4), 443–450.CrossRefGoogle Scholar
  105. Squier, A. M. (1851). Serpent symbol: Reciprocal principles of nature in America. New York: George Putnam.Google Scholar
  106. Sweat, M., Tyson, R., & Hochmuth, R. (2013). Building a floating hydroponic garden. IFAS Extension, University of Florida. Retrieved Oct 1, 2013, from http://edis.ifas.ufl.edu
  107. Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. PNAS, 108, 20260–20264.CrossRefGoogle Scholar
  108. Twomlow, S., Love, D., & Walker, S. (2008). The nexus between integrated natural resources management and integrated water resources management in southern Africa. Physics and Chemistry of the Earth, 33(8–13), 889–898.CrossRefGoogle Scholar
  109. UN. (2012). World population prospects: The 2012 revision. New York: UN Department of Economic and Projection Section.Google Scholar
  110. Vaseashta, A. (2009). Nanomaterials nexus in environmental, human health, and sustainability. In Y. Magarshak, S. Kozyrev, & A. K. Vaseashta (Eds.), Silicon versus carbon (pp. 105–118). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  111. Velázques, E., Madrid, C., & Beltrán, M. J. (2011). Rethinking the concepts of virtual water and water footprint in relation to the production-consumption binomial and the water-energy nexus. Water Resource Management, 25(2), 743–761.CrossRefGoogle Scholar
  112. Venkatesh, G., & Dhakal, S. (2012). An international look at the water-energy nexus. Journal American Water Works Association, 104(5), 93–96.CrossRefGoogle Scholar
  113. Volk, T., & Rummel, J. D. (1987). Mass balances for a biological life support system simulation model. Advances in Space Research, 4, 141–148.CrossRefGoogle Scholar
  114. Wald, M.L. (2013). Carbon capture project in reverse. The New York Times Oct 13 2013.Google Scholar
  115. Washbourne, C. L., Renforth, P., & Manning, D. A. (2012). Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon. Science of the Total Environment, 431, 166–175.CrossRefGoogle Scholar
  116. Wendland, C., Al Baz, I., Akcim, G. A., Kanat, G., & Otterpohl, R. (2007). Waste water treatment in the mediterranean countries. In M. K. Zaidi (Ed.), Wastewater reuse: Risk assessment, decision-making and environmental security. Dordrecht, Netherlands: Springer Publishing.Google Scholar
  117. Wheeler, R. M. (2003). Carbon balance in bioregenerative life support systems: Some effects of system closure, waste management, and crop harvest index. Advances in Space Research, 31, 169–175.CrossRefGoogle Scholar
  118. WHO. (2013). Micronutrient deficiencies: program and projects. Ottawa, ON, Canada: Micronutrient Initiative.Google Scholar
  119. Wikipedia. (2013). Floating gardens, Dhul Lake- Srinagar, Kashmir. Retrieved Oct 1, 2013, from http://commons.wikipedia.org/wiki/File:floating_gardens
  120. World Economic Forum. (2011). Global risks 2011, 6th Edn: An initiative of the risk response network. Retrieved Oct 1, 2013, from http://reports.weforum.org/global-risks-2011/
  121. Yamashita, M., Ishikawa, Y., Kitaya, Y., Goto, E., Arai, M., Hashimoto, H., et al. (2006). An overview of challenges in modeling heat and mass transfer for living on Mars. Annual New York Academy Science, 1077, 232–243.CrossRefGoogle Scholar
  122. Zaidi, M. K. (2007). Wastewater reuse: Risk assessment, decision-making and environmental security. Dordrecht, Netherlands: Springer Publishing.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Carbon Management and Sequestration CenterThe Ohio State UniversityColumbusUSA

Personalised recommendations