Stochastic Modeling for Heterogeneous Two-Phase Flow

  • M. KöppelEmail author
  • I. Kröker
  • C. Rohde
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 77)


The simulation of multiphase flow problems in porous media often requires techniques for uncertainty quantification to represent parameter values that are not known exactly. The use of the stochastic Galerkin approach becomes very complex in view of the highly nonlinear flow equations. On the other hand collocation-like methods suffer from low convergence rates. To overcome these difficulties we present a hybrid stochastic Galerkin finite volume method (HSG-FV) that is in particular well-suited for parallel computations. The new approach is applied to specific two-phase flow problems including the example of a porous medium with a spatially random change in mobility. We emphasize in particular the issue of parallel scalability of the overall method.


Flow in porous media Hybrid stochastic Galerkin finite volume method 



The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart.


  1. 1.
    Alpert, B.K.: A class of bases in \(L^2\) for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246–262 (1993). doi: 10.1137/0524016
  2. 2.
    Bürger, R., Kröker, I., Rohde, C.: A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit. ZAMM Z. Angew. Math. Mech. (2013). doi: 10.1002/zamm.201200174
  3. 3.
    Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of fourier-hermite functionals. Ann. Math. 2(48), 385–392 (1947)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  5. 5.
    Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, Berlin (1997)CrossRefGoogle Scholar
  6. 6.
    Kröker, I., Bürger, R., Rohde, C.: Uncertainty quantification for a clarifier-thickener model with random feed. In: Finite Volumes for Complex Applications VI, vol. 1, pp. 195–203. Springer, Berlin (2011)Google Scholar
  7. 7.
    Kurganov, A., Petrova, G.: Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws. Numer. Meth. Partial Differ. Equ. 21(3), 536–552 (2005). doi: 10.1002/num.20049
  8. 8.
    Poëtte, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228(7), 2443–2467 (2009). doi: 10.1016/
  9. 9.
    Schmidt, A., Siebert, K.G.: Design of adaptive finite element software. In: The Finite Element Toolbox ALBERTA, with 1 CD-ROM (Unix/Linux). Lecture Notes in Computational Science and Engineering, vol. 42. Springer, Berlin (2005)Google Scholar
  10. 10.
    Shewchuk, J.R.: Triangle: engineering a 2D quality mesh generator and delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry: Towards Geometric Engineering. From the First ACM Workshop on Applied Computational Geometry. Lecture Notes in Computer Science, vol. 1148, pp. 203–222. Springer, Berlin (1996)Google Scholar
  11. 11.
    Tryoen, J., Le Maître, O., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229(18), 6485–6511 (2010). doi: 10.1016/
  12. 12.
    Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polyno- mial chaos. J. Comput. Phys. 187(1), 137–167 (2003). doi: 10.1016/S0021-9991(03)00092-5

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.IANSUniversität StuttgartStuttgartGermany

Personalised recommendations