Jordan Groups and Automorphism Groups of Algebraic Varieties

  • Vladimir L. Popov
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 79)


The first section of this paper is focused on Jordan groups in abstract setting, the second on that in the settings of automorphisms groups and groups of birational self-maps of algebraic varieties. The appendix contains formulations of some open problems and the relevant comments.


Normal Subgroup Elliptic Curve Algebraic Group Abelian Variety Finite Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported by grants Open image in new window , Open image in new window , and the programme Contemporary Problems of Theoretical Mathematics of the Branch of Mathematics in the Russian Academy of Sciences.


  1. 1.
    S.I. Adian, The Burnside problem and related topics. Russ. Math. Surv. 65(5), 805–855 (2011)CrossRefGoogle Scholar
  2. 2.
    S.I. Adian, New bounds of odd periods for which we can prove the infinity of free Burnside groups, in International Conference “Contemporary Problems of Mathematics, Mechanics, and Mathematical Physics”. Steklov Math. Inst. RAS, Moscow, 13 May 2013.
  3. 3.
    M.F. Atiyah, I.G. MacDonald, Introduction to Commutative Algebra (Addison-Wesley, Reading, 1969)zbMATHGoogle Scholar
  4. 4.
    I. Barsotti, Structure theorems for group varieties. Ann. Mat. Pura Appl. 38(4), 77–119 (1955)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    A. Borel, Linear Algebraic Groups, 2nd edn. (Springer, New York, 1991)CrossRefzbMATHGoogle Scholar
  6. 6.
    J.W. Cannon, W.J. Floyd, W.R. Parry, Introductory notes on Richard Thompson’s groups. L.’Enseignement Math. Revue Internat. IIe Sér. 42(3), 215–256 (1996)Google Scholar
  7. 7.
    S. Cantat, Morphisms between Cremona groups and a characterization of rational varieties. Preprint (2012),
  8. 8.
    S. Cantat, Letter of May 31, 2013 to V.L. Popov.Google Scholar
  9. 9.
    D. Cerveau, J. Deserti, Transformations birationnelles de petit degreé (April 2009) [arXiv:0811.2325]Google Scholar
  10. 10.
    Y. Cornulier, Nonlinearity of some subgroups of the planar Cremona group. Preprint (February 2013),
  11. 11.
    Y. Cornulier, Sofic profile and computability of Cremona groups (May 2013) [arXiv:1305.0993]Google Scholar
  12. 12.
    M.J. Collins, On Jordan’s theorem for complex linear groups. J. Group Theory 10, 411–423 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    C.W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras (Wiley, New York, 1962)zbMATHGoogle Scholar
  14. 14.
    M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup. 3(4), 507–588 (1970)zbMATHMathSciNetGoogle Scholar
  15. 15.
    I. Dolgachev, Infinite Coxeter groups and automorphisms of algebraic surfaces. Contemp. Math. 58(Part 1), 91–106 (1986)Google Scholar
  16. 16.
    I. Dolgachev, V. Iskovskikh, Finite subgroups of the plane Cremona group, in Algebra, Arithmetic, and Geometry In Honor of Yu.I. Manin. Progress in Mathematics, vol. 269 (Birkhäuser, Boston, 2009), pp. 443–548Google Scholar
  17. 17.
    D. Fisher, Groups acting on manifolds: around the Zimmer program, in Geometry, Rigidity, and Group Actions. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, 2011), pp. 72–157Google Scholar
  18. 18.
    W. Fulton, Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131 (Princeton University Press, Princeton, 1993)Google Scholar
  19. 19.
    B. Huppert, Character Theory of Finite Groups. De Gruyter Expositions in Mathematics, vol. 25 (Walter de Gruyter, Berlin, 1998)Google Scholar
  20. 20.
    T. Igarashi, Finite Subgroups of the Automorphism Group of the Affine Plane. M.A. thesis, Osaka University, 1977Google Scholar
  21. 21.
    V.A. Iskovskikh, Two non-conjugate embeddings of \(\mathrm{Sym}_{3} \times \mathbb{Z}_{2}\) into the Cremona group. Proc. Steklov Inst. Math. 241, 93–97 (2003)MathSciNetGoogle Scholar
  22. 22.
    V.A. Iskovskikh, I.R. Shafarevich, Algebraic surfaces, in Algebraic Geometry, II. Encyclopaedia of Mathematical Sciences, vol. 35 (Springer, Berlin, 1996), pp. 127–262Google Scholar
  23. 23.
    C. Jordan, Mémoire sur les equations différentielle linéaire à intégrale algébrique. J. Reine Angew. Math. 84, 89–215 (1878)CrossRefGoogle Scholar
  24. 24.
    J. Kollár, Y. Miyaoka, S. Mori, H. Takagi, Boundedness of canonical \(\mathbb{Q}\)-Fano 3-folds. Proc. Jpn. Acad. Ser. A Math. Sci. 76, 73–77 (2000)CrossRefzbMATHGoogle Scholar
  25. 25.
    S. Kwasik, R. Schultz, Finite symmetries of \(\mathbb{R}^{4}\) and S 4. Preprint (2012)Google Scholar
  26. 26.
    S. Lang, Algebra (Addison-Wesley, Reading, 1965)zbMATHGoogle Scholar
  27. 27.
    N. Lemire, V. Popov, Z. Reichstein, Cayley groups. J. Am. Math. Soc. 19(4), 921–967 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    N. Lemire, V. Popov, Z. Reichstein, On the Cayley degree of an algebraic group, in Proceedings of the XVIth Latin American Algebra Colloquium. Bibl. Rev. Mat. Iberoamericana, Rev. Mat. (Iberoamericana, Madrid, 2007), pp. 87–97Google Scholar
  29. 29.
    M. Maruyama, On automorphisms of ruled surfaces. J. Math. Kyoto Univ. 11-1, 89–112 (1971)MathSciNetGoogle Scholar
  30. 30.
    H. Matsumura, On algebraic groups of birational tansformations. Rend. Accad. Naz. Lincei Ser. VIII 34, 151–155 (1963)zbMATHMathSciNetGoogle Scholar
  31. 31.
    T. Matsusaka, Polarized varieties, fields of moduli and generalized Kummer varieties of polarized varieties. Am. J. Math. 80, 45–82 (1958)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    W.H. Meeks, Sh.-T. Yau, Group actions on \(\mathbb{R}^{3}\), in The Smith Conjecture (New York, 1979). Pure Appl. Math., vol. 112 (Academic, Orlando, 1984), pp. 167–179Google Scholar
  33. 33.
    L. Moser-Jauslin, Automorphism groups of Koras–Russell threefolds of the first kind, in Affine Algebraic Geometry. CRM Proceedings and Lecture Notes, vol. 54 (American Mathematical Society, Providence, 2011), pp. 261–270Google Scholar
  34. 34.
    G. Mostow, Fully reducible subgroups of algebraic groups. Am. J. Math. 78, 200–221 (1956)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    I. Mundet i Riera, Jordan’s theorem for the diffeomorphism group of some manifolds. Proc. Am. Math. Soc. 138(6), 2253–2262 (2010)Google Scholar
  36. 36.
    I. Mundet i Riera, Letter of July 30, 2013 to V.L. Popov Google Scholar
  37. 37.
    I. Mundet i Riera, Letters of October 30 and 31, 2013 to V.L. Popov Google Scholar
  38. 38.
    I. Mundet i Riera, Finite Group Actions on Manifolds Without Odd Cohomology (November 2013) [arXiv:1310.6565v2]Google Scholar
  39. 39.
    T. Oda, Covex Bodies and Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Bd. 15 (Springer, Berlin, 1988)Google Scholar
  40. 40.
    A.Yu. Olshanskii, Groups of bounded period with subgroups of prime order. Algebra Logic 21, 369–418 (1983) [Translation of Algebra i Logika 21, 553–618 (1982)]Google Scholar
  41. 41.
    A.Yu. Ol’shanskiǐ, Letters of August 15 and 23, 2013 to V.L. Popov Google Scholar
  42. 42.
    V.L. Popov, Algebraic curves with an infinite automorphism group. Math. Notes 23, 102–108 (1978)CrossRefzbMATHGoogle Scholar
  43. 43.
    V.L. Popov, On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties, in Affine Algebraic Geometry: The Russell Festschrift. CRM Proceedings and Lecture Notes, vol. 54 (American Mathematical Society, Providence, 2011), pp. 289–311 (January 2010) [arXiv:1001.1311]Google Scholar
  44. 44.
    V.L. Popov, Some subgroups of the Cremona groups, in Affine Algebraic Geometry. Proceedings (Osaka, Japan, 3–6 March 2011) (World Scientific, Singapore, 2013), pp. 213–242 (October 2011) [arXiv:1110.2410]Google Scholar
  45. 45.
    V.L. Popov, Tori in the Cremona groups. Izvestiya Math. 77(4), 742–771 (2013) (July 2012) [arXiv:1207.5205]Google Scholar
  46. 46.
    V.L. Popov, Problems for the Problem Session (CIRM, Trento) (November 2012),
  47. 47.
    V.L. Popov, Finite Subgroups of Diffeomorphism Groups (October 2013) [arXiv:1310.6548]Google Scholar
  48. 48.
    V.L. Popov, E.B. Vinberg, Invariant theory, in Algebraic Geometry IV. Encyclopaedia of Mathematical Sciences, vol. 55 (Springer, Berlin, 1994), pp. 123–284Google Scholar
  49. 49.
    Y. Prokhorov, C. Shramov, Jordan Property for Cremona Groups (June 2013) [arXiv:1211.3563]Google Scholar
  50. 50.
    Y. Prokhorov, C. Shramov, Jordan Property for Groups of Birational Selfmaps (July 2013) [arXiv:1307.1784]Google Scholar
  51. 51.
    V. Puppe, Do manifolds have little symmetry? J. Fixed Point Theory Appl. 2(1), 85–96 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Z. Reichstein, On the notion of essential dimension for algebraic groups. Transform. Gr. 5(3), 265–304 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Z. Reichstein, Compression of group actions, in Invariant Theory in All Characteristics. CRM Proceedings and Lecture Notes, vol. 35 (Amererican Mathematical Society, Providence, 2004), pp. 199–202Google Scholar
  54. 54.
    Z. Reichstein, B. Youssin, A birational invariant for algebraic group actions. Pac. J. Math. 204, 223–246 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    M. Rosenlicht, Some basic theorems on algebraic groups. Am. J. Math. 78, 401–443 (1956)CrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    M. Rosenlicht, Some rationality questions on algebraic groups. Ann. Mat. Pura Appl. 43(4), 25–50 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    J.-P. Serre, Sous-groupes finis des groupes de Lie, in Séminaire N. Bourbaki 1998∕–99, Exp. no. 864. Astérisque, vol. 266 (Société Mathématique de France, Paris, 2000), pp. 415–430Google Scholar
  58. 58.
    J.-P. Serre, Le groupe de Cremona et ses sous-groupes finis. Séminaire Bourbaki, no. 1000, Novembre 2008, 24 pp.Google Scholar
  59. 59.
    J.-P. Serre, A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field. Moscow Math. J. 9(1), 183–198 (2009)zbMATHGoogle Scholar
  60. 60.
    J.-P. Serre, How to use finite fields for problems concerning infinite fields. Contemp. Math. 487, 183–193 (2009)CrossRefGoogle Scholar
  61. 61.
    T.A. Springer, Linear Algebraic Groups, 2nd edn. Progress in Mathematics, vol. 9 (Birkhäuser, Boston, 1998)Google Scholar
  62. 62.
    Y.G. Zarhin, Theta groups and products of abelian and rational varieties. Proc. Edinb. Math. Soc. (2) 57(1), 299–304 (2014) [arXiv:1006.1112]Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Steklov Mathematical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations