On-Line Lumen Centre Detection in Gastrointestinal and Respiratory Endoscopy

  • Carles SánchezEmail author
  • Jorge Bernal
  • Debora Gil
  • F. Javier Sánchez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8361)


We present in this paper a novel lumen centre detection for gastrointestinal and respiratory endoscopic images. The proposed method is based on the appearance and geometry of the lumen, which we defined as the darkest image region which centre is a hub of image gradients. Experimental results validated on the first public annotated gastro-respiratory database prove the reliability of the method for a wide range of images (with precision over 95 %).


Lumen centre detection Bronchoscopy Colonoscopy 



This work was supported by a research grant from Universitat Autónoma de Barcelona 471-01- 2/2010 and by Spanish projects \(TIN2009-10435\), \(TIN2009-13618\) and \(TIN2012-33116\).


  1. 1.
    Sucar, L.E., Gillies, D.F.: Knowledge-based assistant for colonscopy. In: Proceedings of the 3rd International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, vol. 2, pp. 665–672 (1990)Google Scholar
  2. 2.
    Phee, S., Ng, W., Chen, I., Seow-Choen, F., Davies, B.: Automation of colonoscopy. ii. visual control aspects. Eng. Med. Biol. Mag. IEEE 17(3), 81–88 (1998)Google Scholar
  3. 3.
    Asari, K.V.: A fast and accurate segmentation technique for the extraction of gastrointestinal lumen from endoscopic images. Med. Eng. Phys. 22(2), 89–96 (2000)CrossRefGoogle Scholar
  4. 4.
    Gallo, G., Torrisi, A.: Lumen detection in endoscopic images: a boosting classification approach. Int. J. Adv. Intell. Syst. 5(1–2), 127–134 (2012)Google Scholar
  5. 5.
    Zabulis, X., Argyros, A.A., Tsakiris, D.P.: Lumen detection for capsule endoscopy. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008. pp. 3921–3926. IEEE (2008)Google Scholar
  6. 6.
    Masters, I., Eastburn, M., et al.: A new method for objective identification and measurement of airway lumenin paediatric flexible videobronchoscopy. Thorax 60(8), 652 (2005)Google Scholar
  7. 7.
    McFawn, P., Forkert, L., Fisher, J.: A new method to perform quantitative measurement of bronchoscopic images. ERJ 18(5), 817–826 (2001)CrossRefGoogle Scholar
  8. 8.
    Sanchez, C., Gil, D., Rosell, A., Andaluz, A., Sanchez, F.J.: Segmentation of tracheal rings in videobronchoscopy combining geometry and appearance. In: VISAPP 2013, vol. 1, pp. 153–161 (2013)Google Scholar
  9. 9.
    Bernal, J., Sánchez, J., Vilariño, F.: Impact of image preprocessing methods on polyp localization in colonoscopy frames. In: Proceedings of the 35th International Conference of the IEEE EMBC (Osaka, Japan), July 2013 (in press)Google Scholar
  10. 10.
    Fawcett, T.: An introduction to roc analysis. PR 27(8), 861–874 (2006)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Carles Sánchez
    • 1
    Email author
  • Jorge Bernal
    • 1
  • Debora Gil
    • 1
  • F. Javier Sánchez
    • 1
  1. 1.Computer Vision Centre and Computer Science DepartmentCampus Universitat Autònoma de BarcelonaBellaterra, BarcelonaSpain

Personalised recommendations