Biomechanics of Training and Testing pp 237-267 | Cite as
A Simple Method for Measuring Force, Velocity and Power Capabilities and Mechanical Effectiveness During Sprint Running
- 5 Citations
- 875 Downloads
Abstract
A macroscopic view of sprint mechanics during an acceleration phase, and notably athlete’s propulsion capacities, can be given by Force-velocity (F-v) and Power-velocity (P-v) relationships. They characterize the change in athlete’s maximal horizontal force and power production capabilities when running speed increases and directly determine sprint acceleration performance. This chapter presents an accurate and reliable simple method to determine these mechanical capabilities during sprinting. This method, based on a macroscopic biomechanical model and validated in laboratory conditions in comparison to force plate measurements, is very convenient for field use since it only requires anthropometric (body mass and stature) and spatio-temporal (split times or instantaneous velocity) input variables. It provides different information on athlete’s horizontal force production capabilities: maximal power output, maximal horizontal force, maximal velocity until which horizontal force can be produced and mechanical effectiveness of force application onto the ground. This information presents interesting practical applications for sport practitioners to individualize training focusing on sprint acceleration performance, but also perspectives in injury management. This chapter presents different examples of such applications. Moreover, this simple method can also help to bring new insight into the limits of human locomotion since it makes possible to estimate sprinting mechanical properties of the fastest men and women without testing them in a laboratory.
Keywords
Sprint Running Sprint Acceleration Split Time Force Production Capability Maximum Horizontal ForceReferences
- Arsac LM, Locatelli E (2002) Modeling the energetics of 100-m running by using speed curves of world champions. J Appl Physiol 92(5):1781–1788. https://doi.org/10.1152/japplphysiol.00754.2001 CrossRefPubMedGoogle Scholar
- Aughey RJ (2011) Applications of GPS technologies to field sports. Int J Sports Physiol Perform 6(3):295–310CrossRefPubMedGoogle Scholar
- Barbero-Alvarez JC, Coutts A, Granda J, Barbero-Alvarez V, Castagna C (2010) The validity and reliability of a global positioning satellite system device to assess speed and repeated sprint ability (RSA) in athletes. J Sci Med Sport 13(2):232–235. https://doi.org/10.1016/j.jsams.2009.02.005 CrossRefPubMedGoogle Scholar
- Bezodis NE, Salo AI, Trewartha G (2012) Measurement error in estimates of sprint velocity from a laser displacement measurement device. Int J Sports Med 33(6):439–444. https://doi.org/10.1055/s-0031-1301313 CrossRefPubMedGoogle Scholar
- Buchheit M, Al Haddad H, Simpson BM, Palazzi D, Bourdon PC, Di Salvo V, Mendez-Villanueva A (2014a) Monitoring accelerations with GPS in football: time to slow down? Int J Sports Physiol Perform 9(3):442–445. https://doi.org/10.1123/ijspp.2013-0187 CrossRefPubMedGoogle Scholar
- Buchheit M, Samozino P, Glynn JA, Michael BS, Al Haddad H, Mendez-Villanueva A, Morin JB (2014b) Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. J Sports Sci 32(20):1906–1913. https://doi.org/10.1080/02640414.2014.965191 CrossRefPubMedGoogle Scholar
- Cavagna GA, Komarek L, Mazzoleni S (1971) The mechanics of sprint running. J Physiol 217(3):709–721CrossRefPubMedPubMedCentralGoogle Scholar
- Chelly SM, Denis C (2001) Leg power and hopping stiffness: relationship with sprint running performance. Med Sci Sports Exerc 33(2):326–333CrossRefPubMedGoogle Scholar
- Cross MR, Brughelli M, Brown SR, Samozino P, Gill ND, Cronin JB, Morin JB (2015) Mechanical properties of sprinting in elite rugby union and rugby league. Int J Sports Physiol Perform 10(6):695–702. https://doi.org/10.1123/ijspp.2014-0151 CrossRefPubMedGoogle Scholar
- Cross MR, Brughelli M, Samozino P, Brown SR, Morin JB (2017) Optimal loading for maximising power during sled-resisted sprinting. Int J Sports Physiol Perform 1–25. https://doi.org/10.1123/ijspp.2016-0362
- di Prampero PE, Botter A, Osgnach C (2015) The energy cost of sprint running and the role of metabolic power in setting top performances. Eur J Appl Physiol 115(3):451–469. https://doi.org/10.1007/s00421-014-3086-4 CrossRefPubMedGoogle Scholar
- di Prampero PE, Fusi S, Sepulcri L, Morin JB, Belli A, Antonutto G (2005) Sprint running: a new energetic approach. J Exp Biol 208:2809–2816CrossRefPubMedGoogle Scholar
- Edouard P, Nagahara R, Samozino P, Rossi J, Brughelli M, Mendiguchia J, Morin J (under review) Is maximal horizontal force output during sprint acceleration associated with increased risk of hamstring muscle injuries in soccer: a pilot prospective study? Google Scholar
- Furusawa K, Hill AV, Parkinson JL (1927) The dynamics of “sprint” running. Proc R Soc B 102:29–42CrossRefGoogle Scholar
- Haugen T, Buchheit M (2016) Sprint running performance monitoring: methodological and practical considerations. Sports Med 46(5):641–656. https://doi.org/10.1007/s40279-015-0446-0 CrossRefPubMedGoogle Scholar
- Helene O, Yamashita MT (2010) The force, power and energy of the 100 meter sprint. Am J Phys 78:307–309CrossRefGoogle Scholar
- Henry FM (1954) Time-velocity equations and oxygen requirements of “all-out” and “steady-pace” running. Res Q 25:164–177Google Scholar
- Jaskolska A, Goossens P, Veenstra B, Jaskolski A, Skinner JS (1999) Treadmill measurement of the force-velocity relationship and power output in subjects with different maximal running velocities. Sports Med Train Rehab 8:347–358CrossRefGoogle Scholar
- Jaskolski A, Veenstra B, Goossens P, Jaskolska A, Skinner JS (1996) Optimal resistance for maximal power during treadmill running. Sports Med Train Rehabil 7:17–30CrossRefGoogle Scholar
- Jennings D, Cormack S, Coutts AJ, Boyd LJ, Aughey RJ (2010) Variability of GPS units for measuring distance in team sport movements. Int J Sports Physiol Perform 5(4):565–569CrossRefPubMedGoogle Scholar
- Kawamori N, Newton R, Nosaka K (2014) Effects of weighted sled towing on ground reaction force during the acceleration phase of sprint running. J Sports Sci 32(12):1139–1145. https://doi.org/10.1080/02640414.2014.886129 CrossRefPubMedGoogle Scholar
- Lockie RG, Murphy AJ, Schultz AB, Jeffriess MD, Callaghan SJ (2013) Influence of sprint acceleration stance kinetics on velocity and step kinematics in field sport athletes. J Strength Cond Res 27(9):2494–2503. https://doi.org/10.1519/JSC.0b013e31827f5103 CrossRefPubMedGoogle Scholar
- Mendiguchia J, Edouard P, Samozino P, Brughelli M, Cross M, Ross A, Gill N, Morin JB (2016) Field monitoring of sprinting power-force-velocity profile before, during and after hamstring injury: two case reports. J Sports Sci 34(6):535–541. https://doi.org/10.1080/02640414.2015.1122207 CrossRefPubMedGoogle Scholar
- Mendiguchia J, Samozino P, Martinez-Ruiz E, Brughelli M, Schmikli S, Morin JB, Mendez-Villanueva A (2014) Progression of mechanical properties during on-field sprint running after returning to sports from a hamstring muscle injury in soccer players. Int J Sports Med 35(8):690–695. https://doi.org/10.1055/s-0033-1363192 CrossRefPubMedGoogle Scholar
- Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR (2012) Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol 112(11):3921–3930. https://doi.org/10.1007/s00421-012-2379-8 CrossRefPubMedGoogle Scholar
- Morin JB, Edouard P, Samozino P (2011a) Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc 43(9):1680–1688CrossRefPubMedGoogle Scholar
- Morin JB, Jeannin T, Chevallier B, Belli A (2006) Spring-mass model characteristics during sprint running: correlation with performance and fatigue-induced changes. Int J Sports Med 27(2):158–165. https://doi.org/10.1055/s-2005-837569 CrossRefPubMedGoogle Scholar
- Morin JB, Petrakos G, Jimenez-Reyes P, Brown SR, Samozino P, Cross MR (2017) Very-heavy sled training for improving horizontal-force output in soccer players. Int J Sports Physiol Perform 12(6):840–844. https://doi.org/10.1123/ijspp.2016-0444 CrossRefPubMedGoogle Scholar
- Morin JB, Samozino P (2016) Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform 11(2):267–272Google Scholar
- Morin JB, Samozino P, Bonnefoy R, Edouard P, Belli A (2010) Direct measurement of power during one single sprint on treadmill. J Biomech 43(10):1970–1975CrossRefPubMedGoogle Scholar
- Morin JB, Samozino P, Edouard P, Tomazin K (2011b) Effect of fatigue on force production and force application technique during repeated sprints. J Biomech 44(15):2719–2723. https://doi.org/doi:10.1016/j.jbiomech.2011.07.020 (S0021-9290(11)00526-4 [pii])
- Nagahara R, Botter A, Rejc E, Koido M, Shimizu T, Samozino P, Morin JB (2017) Concurrent validity of GPS for deriving mechanical properties of sprint acceleration. Int J Sports Physiol Perform 12(1):129–132. https://doi.org/10.1123/ijspp.2015-0566 CrossRefPubMedGoogle Scholar
- Petrakos G, Morin JB, Egan B (2016) Resisted sled sprint training to improve sprint performance: a systematic review. Sports Med 46(3):381–400. https://doi.org/10.1007/s40279-015-0422-8 CrossRefPubMedGoogle Scholar
- Rabita G, Dorel S, Slawinski J, Saez de villarreal E, Couturier A, Samozino P, Morin JB (2015) Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. https://doi.org/10.1111/sms.12389
- Rampinini E, Alberti G, Fiorenza M, Riggio M, Sassi R, Borges TO, Coutts AJ (2015) Accuracy of GPS devices for measuring high-intensity running in field-based team sports. Int J Sports Med 36(1):49–53. https://doi.org/10.1055/s-0034-1385866 PubMedGoogle Scholar
- Romero-Franco N, Jimenez-Reyes P, Castano-Zambudio A, Capelo-Ramirez F, Rodriguez-Juan JJ, Gonzalez-Hernandez J, Toscano-Bendala FJ, Cuadrado-Penafiel V, Balsalobre-Fernandez C (2016) Sprint performance and mechanical outputs computed with an iPhone app: comparison with existing reference methods. Eur J Sport Sci:1–7. https://doi.org/10.1080/17461391.2016.1249031
- Samozino P, Morin JB, Hintzy F, Belli A (2008) A simple method for measuring force, velocity and power output during squat jump. J Biomech 41(14):2940–2945CrossRefPubMedGoogle Scholar
- Samozino P, Morin JB, Hintzy F, Belli A (2010) Jumping ability: a theoretical integrative approach. J Theor Biol 264(1):11–18CrossRefPubMedGoogle Scholar
- Samozino P, Rabita G, Dorel S, Slawinski J, Peyrot N, Saez de Villarreal E, Morin JB (2016) A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports 26(6):648–658. https://doi.org/10.1111/sms.12490 CrossRefPubMedGoogle Scholar
- Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB (2012) Optimal force-velocity profile in ballistic movements. Altius: citius or fortius? Med Sci Sports Exerc 44(2):313–322CrossRefPubMedGoogle Scholar
- Simperingham KD, Cronin JB, Ross A (2016) Advances in sprint acceleration profiling for field-based team-sport athletes: utility, reliability, validity and limitations. Sports Med 46(11):1619–1645. https://doi.org/10.1007/s40279-016-0508-y CrossRefPubMedGoogle Scholar
- Slawinski J, Bonnefoy A, Ontanon G, Leveque JM, Miller C, Riquet A, Cheze L, Dumas R (2010) Segment-interaction in sprint start: analysis of 3D angular velocity and kinetic energy in elite sprinters. J Biomech 43(8):1494–1502. https://doi.org/10.1016/j.jbiomech.2010.01.044 CrossRefPubMedGoogle Scholar
- Slawinski J, Termoz N, Rabita G, Guilhem G, Dorel S, Morin JB, Samozino P (2017) How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand J Med Sci Sports 27(1):45–54. https://doi.org/10.1111/sms.12627 CrossRefPubMedGoogle Scholar
- van Ingen Schenau GJ, Jacobs R, de Koning JJ (1991) Can cycle power predict sprint running performance? Eur J Appl Physiol Occup Physiol 63(3–4):255–260CrossRefPubMedGoogle Scholar
- Woods C, Hawkins RD, Maltby S, Hulse M, Thomas A, Hodson A, Football Association Medical Research P (2004) The football association medical research programme: an audit of injuries in professional football-analysis of hamstring injuries. Br J Sports Med 38(1):36–41Google Scholar