Plant Energy Management

  • Stamatis Karnouskos
  • Vladimir Havlena
  • Eva Jerhotova
  • Petr Kodet
  • Marek Sikora
  • Petr Stluka
  • Pavel Trnka
  • Marcel Tilly
Chapter

Abstract

In the IMC-AESOP project, a plant energy management use case was developed to highlight advantages of service orientation, event-driven processing and information models for increased performance, easier configuration, dynamic synchronisation and long-term maintenance of complicated multi-layer solutions, which are deployed nowadays in the continuous process plants. From the application perspective, three scenarios were implemented including advanced control and real-time optimisation of an industrial utility plant, enterprise energy management enabling interactions with the external electricity market, and advanced alarm management utilizing the Complex Event Processing technology.

References

  1. 1.
    Hollifield B, Habibi E (2007) Alarm management: seven effective methods for optimum performance. Instrumentation, Systems, and Automation Society, GermanyGoogle Scholar
  2. 2.
    Ilic D, Goncalves Da Silva P, Karnouskos S, Griesemer M (2012) An energy market for trading electricity in smart grid neighbourhoods. In: 6th IEEE international conference on digital ecosystem technologies—complex environment engineering (IEEE DEST-CEE), Campione d’Italia, ItalyGoogle Scholar
  3. 3.
    Jammes F, Bony B, Nappey P, Colombo AW, Delsing J, Eliasson J, Kyusakov R, Karnouskos S, Stluka P, Tilly M (2012) Technologies for SOA-based distributed large scale process monitoring and control systems. In: 38th annual conference of the IEEE industrial electronics society (IECON 2012), Montréal, CanadaGoogle Scholar
  4. 4.
    Karnouskos S (2011) Demand side management via prosumer interactions in a smart city energy marketplace. In: IEEE international conference on innovative smart grid technologies (ISGT 2011), Manchester, UKGoogle Scholar
  5. 5.
    Karnouskos S, Colombo AW, Bangemann T, Manninen K, Camp R, Tilly M, Stluka P, Jammes F, Delsing J, Eliasson J (2012a) A SOA-based architecture for empowering future collaborative cloud-based industrial automation. In: 38th annual conference of the IEEE industrial electronics society (IECON 2012), Montréal, CanadaGoogle Scholar
  6. 6.
    Karnouskos S, Goncalves Da Silva P, Ilic D (2012b) Energy services for the smart grid city. In: 6th IEEE international conference on digital ecosystem technologies—complex environment engineering (IEEE DEST-CEE), Campione d’Italia, ItalyGoogle Scholar
  7. 7.
    Karnouskos S, Ilic D, Goncalves Da Silva P (2012c) Using flexible energy infrastructures for demand response in a smart grid city. In: The third IEEE PES innovative smart grid technologies (ISGT) Europe, Berlin, GermanyGoogle Scholar
  8. 8.
    Mahnke W, Leitner SH, Damm M (2009) OPC unified architecture. Springer, Heidelberg. ISBN 978-3-540-68899-0Google Scholar
  9. 9.
    OPC Foundation (2011) OPC UA specification part 8—data access (RC 1.02)Google Scholar
  10. 10.
    Ramezani M, Graf M, Vogt H (2011) A simulation environment for smart charging of electric vehicles using a multi-objective evolutionary algorithm. In: First international conference on information and communication on technology for the fight against global warming (ICT-GLOW 2011), Toulouse, August 30–31. Lecture notes in computer science, vol 6868. Springer, Berlin, pp 56–63. doi:10.1007/978-3-642-23447-7_6
  11. 11.
    Rothenberg D (2009) Alarm management for process control: a best-practice guide for design, implementation, and use of industrial alarm systems. Momentum Press, New YorkGoogle Scholar
  12. 12.
    Sauter T, Soucek S, Kastner W, Dietrich D (2011) The evolution of factory and building automation. Ind Electron Mag IEEE 5(3):35–48. doi:10.1109/MIE.2011.942175
  13. 13.
    SmartGrids ETP (2012) SmartGrids SRA 2035—strategic research agenda. Technical report, SmartGrids european technology platform, European commission. http://www.smartgrids.eu/documents/sra2035.pdf
  14. 14.
    Trnka P, Sturk C, Sandberg H, Havlena V, Rehor J (2013) Structured model order reduction of parallel models in feedback. IEEE Trans Control Syst Technol 21(3):739–753CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stamatis Karnouskos
    • 1
  • Vladimir Havlena
    • 2
  • Eva Jerhotova
    • 2
  • Petr Kodet
    • 2
  • Marek Sikora
    • 2
  • Petr Stluka
    • 2
  • Pavel Trnka
    • 2
  • Marcel Tilly
    • 3
  1. 1.SAPKarlsruheGermany
  2. 2.HoneywellPragueCzech Republic
  3. 3.MicrosoftUnterschleißheimGermany

Personalised recommendations