Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Subcells

  • Matthias Sonntag
  • Claus-Dieter Munz
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 78)


We present a shock capturing procedure for high order discontinuous Galerkin methods, by which shock regions are refined and treated by the finite volume techniques. Hence, our approach combines the good properties of the discontinuous Galerkin method in smooth parts of the flow with the perfect properties of a total variation diminishing finite volume method for resolving shocks without spurious oscillations. Due to the subcell approach the interior resolution on the discontinuous Galerkin grid cell is preserved and the number of degrees of freedom remains the same. In this paper we focus on an implementation of this coupled method and show our first results.


Shock capturing Finite volume subcells Discontinuous Galerkin 


  1. 1.
    Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for the euler and navierstokes equations. Int. J. Numer. Meth. Fluids 31, 7995 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Burbeau, A., Sagaut, P., Bruneau, C.H.: A problem-independent limiter for high-order rungekutta discontinuous galerkin methods. J. Comput. Phys. 169(1), 111–150 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous galerkin methods. In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2006)Google Scholar
  5. 5.
    Shi, J., Zhang, Y.T., Shu, C.W.: Resolution of high order weno schemes for complicated flow structures. J. Comput. Phys. 186(2), 690–696 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    VonNeumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Aerodynamics and Gas Dynamics, University of StuttgartStuttgartGermany

Personalised recommendations