Enhancing Wi-Fi Signal Strength of a Dynamic Heterogeneous System Using a Mobile Robot Provider

  • Esther Rolf
  • Matt Whitlock
  • Byung-Cheol Min
  • Eric T. Matson
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 274)

Abstract

Heterogeneous networks of humans, robots, and agents are becoming increasingly common. Clients of wireless networks have continuously changing requirements for providers. In this project, a system to provide a sufficient signal for clients of a network as conditions change is proposed and validated. The system is comprised of hardware features such as a mobile access point and three heterogeneous client devices, and a movement algorithm. The mobile provider’s autonomy is verified by the independence of initial position or orientation from success of the system. The system is designed for ease of reconfiguration; modularity in system design allows for advancements to be implemented simply and effectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, N., Rashidzadeh, R., Ahmadi, M.: Robust Indoor Positioning Using Differential Wi-Fi Access Points. IEEE Transactions on Consumer Electronics 56(3), 1860–1867 (2010)CrossRefGoogle Scholar
  2. 2.
    Correll, N., Bachrach, J., Vickery, D., Rus, D.: Ad-hoc Wireless Network Coverage with Networked Robots that Cannot Localize. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3878–3885. IEEE (2009)Google Scholar
  3. 3.
    DARwIn robot: Robotis (2013), http://robotis.com
  4. 4.
    Dong, Q., Dargie, W.: Evaluation of the Reliability of RSSI for Indoor Localization. In: 2012 International Conference on Wireless Communications in Unusual and Confined Areas (ICWCUCA), pp. 1–6. IEEE (2012)Google Scholar
  5. 5.
    Hayes, A.T., Martinoli, A., Goodman, R.M.: Distributed Odor Source Localization. IEEE Sensors Journal 2(3), 260–271 (2002)CrossRefGoogle Scholar
  6. 6.
    Ladd, A.M., Bekris, K.E., Rudys, A., Kavraki, L.E., Wallach, D.S.: Robotics-based Location Sensing Using Wireless Ethernet. Wireless Networks 11, 189–204 (2005)CrossRefGoogle Scholar
  7. 7.
    Lucas, J.M., Saccucci, M.S.: Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. Technometrics 32(1), 1–12 (1990)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Pabst, R., Walke, B.H., Schultz, D.C., Herhold, P., Yanikomeroglu, H., Mukherjee, S., Viswanathan, H., Lott, M., Zirwas, W., Dohler, M., et al.: Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Communications Magazine 42(9), 80–89 (2004)CrossRefGoogle Scholar
  9. 9.
    PicoStation: Ubiquiti Networks (2013)Google Scholar
  10. 10.
    Roberts, S.W.: Control chart tests based on geometric moving averages. Technometrics 1(3), 239–250 (1959)CrossRefGoogle Scholar
  11. 11.
    Stoleru, R., Wu, H., Chenji, H.: Secure neighbor discovery and wormhole localization in mobile ad hoc networks. Ad Hoc Networks 10(7), 1179–1190 (2012)CrossRefGoogle Scholar
  12. 12.
    Tekdas, O., Yang, W., Isler, V.: Robotic Routers: Algorithms and Implementation. The International Journal of Robotics Research 29(1), 110–126 (2010)CrossRefGoogle Scholar
  13. 13.
    Twigg, J.N., Fink, J.R., Yu, P., Sadler, B.M.: RSS Gradient-Assisted Frontier Exploration and Radio Source Localization. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 889–895. IEEE (2012)Google Scholar
  14. 14.
    Zhang, X., Sun, Y., Xiao, J., Cabrera-Mora, F.: Theseus gradient guide: An indoor transmitter searching approach using received signal strength. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2560–2565. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Esther Rolf
    • 1
  • Matt Whitlock
    • 2
  • Byung-Cheol Min
    • 3
  • Eric T. Matson
    • 3
  1. 1.Princeton UniversityPrincetonUSA
  2. 2.The University of AlabamaTuscaloosaUSA
  3. 3.Machine-to-Machine (M2M) Lab, Department of Computer and Information TechnologyPurdue UniversityWest LafayetteUSA

Personalised recommendations