Accurate Whole-Brain Segmentation for Alzheimer’s Disease Combining an Adaptive Statistical Atlas and Multi-atlas

  • Zhennan Yan
  • Shaoting Zhang
  • Xiaofeng Liu
  • Dimitris N. Metaxas
  • Albert MontilloEmail author
  • The Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8331)


Accurate segmentation of whole brain MR images including the cortex, white matter and subcortical structures is challenging due to inter-subject variability and the complex geometry of brain anatomy. However a precise solution would enable accurate, objective measurement of structure volumes for disease quantification. Our contribution is three-fold. First we construct an adaptive statistical atlas that combines structure specific relaxation and spatially varying adaptivity. Second we integrate an isotropic pairwise class-specific MRF model of label connectivity. Together these permit precise control over adaptivity, allowing many structures to be segmented simultaneously with superior accuracy. Third, we develop a framework combining the improved adaptive statistical atlas with a multi-atlas method which achieves simultaneous accurate segmentation of the cortex, ventricles, and sub-cortical structures in severely diseased brains, a feat not attained in [18]. We test the proposed method on 46 brains including 28 diseased brain with Alzheimer’s and 18 healthy brains. Our proposed method yields higher accuracy than state-of-the-art approaches on both healthy and diseased brains.


Brain segmentation Alzheimer’s Adaptive atlas Multi-atlas MRF 


  1. 1.
    Ashburner, J., Friston, K.: Unified segmentation. NeuroImage 26, 839–851 (2005)CrossRefGoogle Scholar
  2. 2.
    Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)CrossRefGoogle Scholar
  3. 3.
    Cardoso, M., Clarkson, M., Ridgway, G., Modat, M., Fox, N., Ourselin, S.: Load: a locally adaptive cortical segmentation algorithm. NeuroImage 56(3), 1386–1397 (2011)CrossRefGoogle Scholar
  4. 4.
    Ellis, K., et al.: The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. 21(04), 672–687 (2009)CrossRefGoogle Scholar
  5. 5.
    Fischl, B., Salat, D., Busa, E., Albert, M., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)CrossRefGoogle Scholar
  6. 6.
    Gao, Y., Liao, S., Shen, D.: Prostate segmentation by sparse representation based classification. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 451–458. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Han, X., Hibbard, L., Oconnell, N., Willcut, V.: Automatic segmentation of parotids in head and neck CT images using multi-atlas fusion. In: MICCAI, pp. 297–304 (2010)Google Scholar
  8. 8.
    Iglesias, J., Liu, C., Thompson, P., Tu, Z.: Robust brain extraction across datasets and comparison with publicly available methods. TMI 30(9), 1617–1634 (2011)Google Scholar
  9. 9.
    Liu, X., Montillo, A., Tan, E., Schenck, J.: iSTAPLE: improved label fusion for segmentation by combining STAPLE with image intensity. In: SPIE Medical Imaging (2013)Google Scholar
  10. 10.
    Mitchell, S., Bosch, J., Lelieveldt, B., van der Geest, R., Reiber, J., Sonka, M.: 3-d active appearance models: segmentation of cardiac MR and ultrasound images. TMI 21(9), 1167–1178 (2002)Google Scholar
  11. 11.
    Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2(1), 315–337 (2000)CrossRefGoogle Scholar
  12. 12.
    Rousseau, F., Habas, P., Studholme, C.: A supervised patch-based approach for human brain labeling. TMI 30(10), 1852–1862 (2011)Google Scholar
  13. 13.
    Shiee, N., Bazin, P.-L., Cuzzocreo, J.L., Blitz, A., Pham, D.L.: Segmentation of brain images using adaptive atlases with application to ventriculomegaly. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 1–12. Springer, Heidelberg (2011)Google Scholar
  14. 14.
    Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. TMI 18(10), 897–908 (1999)Google Scholar
  15. 15.
    Wang, H., Suh, J.W., Das, S.R., Pluta, J., Altinay, M., Yushkevich, P.A.: Regression-based label fusion for multi-atlas segmentation. In: CVPR, pp. 1113–1120 (2011)Google Scholar
  16. 16.
    Warfield, S., Zou, K., Wells, W.: Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. TMI 23(7), 903–921 (2004)Google Scholar
  17. 17.
    Wu, G., Kim, M., Wang, Q., Shen, D.: Hierarchical attribute-guided symmetric diffeomorphic registration for MR brain images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 90–97. Springer, Heidelberg (2012)Google Scholar
  18. 18.
    Yan, Z., Zhang, S., Liu, X., Metaxas, D., Montillo, A., AIBL: accurate segmentation of brain images into 34 structures combining a non-stationary adaptive statistical atlas and a multi-atlas with applications to Alzheimer’s disease. In: ISBI (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zhennan Yan
    • 1
  • Shaoting Zhang
    • 1
  • Xiaofeng Liu
    • 2
  • Dimitris N. Metaxas
    • 1
  • Albert Montillo
    • 2
    Email author
  • The Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing
    • 3
  1. 1.CBIMRutgers, The State University of New JerseyPiscatawayUSA
  2. 2.GE Global ResearchNiskayunaUSA
  3. 3.Commonwealth Scientific and Industrial Research OrganisationBrisbaneAustralia

Personalised recommendations