Adsorption of Two Dyes by Mg(OH)2: Procion Blue HB and Remazol Brilliant Blue R

  • Zohra Bouberka
  • Kahina Bentaleb
  • Khalil A. Benabbou
  • Ulrich Maschke
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 155)


The use of low-cost and ecofriendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. Mg(OH)2 sludge was produced from precipitation of magnesium ions (Mg2+) with NaOH in pH = 10 and investigated as a low-cost adsorbent. This paper deals with the removal of textile dyes from aqueous solutions by Mg(OH)2. Reactive Procion blue HB (PR) and Acid Remazol brilliant blue R (RB) were used as model compounds. The adsorption capacity was found as 43.47 and 26.89 mg/g at initial pH 6.5.


Adsorption Environment Dye pollutant 


  1. 1.
    N. Kannan, M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes Pigm. 51, 25–40 (2001)CrossRefGoogle Scholar
  2. 2.
    V. Meshko, L. Markovska, M. Mincheva, A.E. Rodrigues, Adsorption of basic dyes on granular activated carbon and natural zeolite. Water Res. 35, 3357–3366 (2001)CrossRefGoogle Scholar
  3. 3.
    G. McKay, The adsorption of dyestuffs from aqueous solution using activated carbon: analytical solution for batch adsorption based on external mass transfer and pore diffusion. Chem. Eng. J. 27, 187–196 (1983)CrossRefGoogle Scholar
  4. 4.
    K.C.L.N. Rao, K.K. Ashutosh, Color removal from dyestuff industry effluent using activated carbon. Indian J. Chem. Tech. 1, 13–19 (1994)Google Scholar
  5. 5.
    S.J. Allen, Types of adsorbent materials, in Use of Adsorbents for the Removal of Pollutants from Wastewaters, ed. by G. McKay (CRC Inc., Boca Raton, 1996), pp. 59–97Google Scholar
  6. 6.
    K.R. Ramakrishna, T. Viraraghavan, Dye removal using low cost adsorbents. Water Sci. Technol. 36, 189–196 (1997)CrossRefGoogle Scholar
  7. 7.
    Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70, 115–124 (1998)CrossRefGoogle Scholar
  8. 8.
    G. McKay, H.S. Blair, J.R. Gardner, Rate studies for the adsorption of dyestuffs on chitin. J. Colloid Interf. Sci. 95, 108–119 (1983)CrossRefGoogle Scholar
  9. 9.
    G. McKay, Analytical solution using a pore diffusion model for a pseudo-irreversible isotherm for the adsorption of basic dye on silica. AIChE J. 30, 692–697 (1984)CrossRefGoogle Scholar
  10. 10.
    K.S. Low, C.K. Lee, Quaternized rice husk as sorbent for reactive dyes. Bioresour. Technol. 61, 121–125 (1997)CrossRefGoogle Scholar
  11. 11.
    C. Namasivayam, D. Prabha, M. Kumutha, Removal of direct red and acid brilliant blue by adsorption on to banana pith. Bioresour. Technol. 64, 77–79 (1998)CrossRefGoogle Scholar
  12. 12.
    W.T. Tsai, C.Y. Chang, M.C. Lin, S.F. Chien, H.F. Sun, M.F. Hsieh, Adsorption of acid dye onto activated carbon prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere 45, 51–58 (2001)CrossRefGoogle Scholar
  13. 13.
    R. Sivaraj, C. Namasivayam, K. Kadirvelu, Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. Waste Manag. 21, 105–110 (2001)CrossRefGoogle Scholar
  14. 14.
    G. Annadurai, R.S. Juang, D.J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 92, 263–274 (2002)CrossRefGoogle Scholar
  15. 15.
    C. Namasivayam, D. Kavitha, Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigm. 54, 47–58 (2002)CrossRefGoogle Scholar
  16. 16.
    T. Robinson, P. Chandran, P. Nigam, Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Res. 36, 2824–2830 (2002)CrossRefGoogle Scholar
  17. 17.
    S. Utamapanya, K.J. Klabunde, J.R. Schlup, Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chem. Mater. 3, 175–181 (1991)CrossRefGoogle Scholar
  18. 18.
    O.B. Koper, I. Lagadic, A. Volodin, K.J. Klabunde, Alkaline-earth oxide nanoparticles obtained by aerogel methods. Characterization and rational for unexpectedly high surface chemical reactivities. Chem. Mater. 9, 2468–2480 (1997)CrossRefGoogle Scholar
  19. 19.
    J.A. Wang, O. Novaro, X. Bokhimi, T. Lopez, R. Gomez, J. Navarrete, M.E. Llanos, E. Lopez-Salinas, Structural defects and acidic and basic sites in sol-gel MgO. J. Phys. Chem. B 101, 7448–7451 (1997)CrossRefGoogle Scholar
  20. 20.
    J.A. Wang, O. Novaro, X. Bokhimi, T. Lopez, R. Gomez, J. Navarrete, M.E. Llanos, E. Lopez-Salinas, Characterizations of the thermal decomposition of brucite prepared by sol–gel technique for synthesis of nanocrystalline MgO. Mater. Lett. 35, 317–323 (1998)CrossRefGoogle Scholar
  21. 21.
    Y.D. Li, M. Sui, Y. Ding, G. Zhang, J. Zhuang, C. Wang, Preparation of Mg(OH)2 nanorods. Adv. Mater. 12, 818–821 (2000)CrossRefGoogle Scholar
  22. 22.
    Y. Ding, G.T. Zhang, H. Wu, B. Hai, L.B. Wang, Y.T. Qian, Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. Chem. Mater. 13, 435–440 (2001)CrossRefGoogle Scholar
  23. 23.
    A.V. Radhaa, Kamatha P. Vishnu, G.N. Subbanna, Disorder in layered hydroxides: synthesis and DIFFaX simulation studies of Mg(OH)2. Mat. Res. Bull. 38, 731–740 (2003)CrossRefGoogle Scholar
  24. 24.
    H.R. Oswald, R. Asper, Preparation and Crystal Growth of Materials with Layered Structures, vol. 1 (D. Reidal Publishing Company, Dordrecht, 1977), p. 71CrossRefGoogle Scholar
  25. 25.
    G. McKay, Y.S. Ho, The sorption of lead (II) on peat. Water Res. 33, 578–584 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zohra Bouberka
    • 1
  • Kahina Bentaleb
    • 1
  • Khalil A. Benabbou
    • 1
  • Ulrich Maschke
    • 2
  1. 1.Laboratoire physico-chimie des matériaux-catalyse et environnementUniversité des Sciences et de la Technologie d’Oran «USTO»OranAlgeria
  2. 2.Unité Matériaux et Transformations—UMET (UMR CNRS N°8207), Bâtiment C6Université Lille 1—Sciences et TechnologiesVilleneuve d’Ascq CedexFrance

Personalised recommendations