Photochemical Degradation of Polybrominated Diphenylether BDE209 Under Ultraviolet Irradiation

  • Yassine Agguine
  • Nadjia Laouedj
  • Ahmed Bekka
  • Zohra Bouberka
  • Abdelouahab Nadim
  • Said Eddarir
  • Ulrich Maschke
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 155)

Abstract

The photodegradation of decabromodiphenylether (BDE209) in Tetrahydrofuran was investigated under UV light, employing a xenon source with 150 W. The degradation reactions obey a first-order rate law. The photolytic chemical reduction of BDE209 in THF under UV irradiation can rapidly degrade BDE209 to form lower bromine substituted diphenylethers. The reductive debromination mechanism of the photolytic degradation of BDE209 can facilitate the design of remediation processes and help to predict their fate in the environment.

Keywords

Photodegradation Environment Flame retardant 

References

  1. 1.
    EHC-122, Brominated diphenyl ethers. International Program on Chemical Safety. (World Health Organization, Switzerland, 1994) Google Scholar
  2. 2.
    C. Lassen, S. Løkke, L.I. Andersen, Brominated flame retardants: substance flow analysis and assessment of alternatives. Environmental Project Nr. 494. Danish Environmental Protection Agency (1999)Google Scholar
  3. 3.
    P.O. Darnerud, G.S. Eriksen, T. Jóhannesson, P.B. Larsen, M. Viluksela, Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environ. Health Perspect. 109, 49–68 (2001)CrossRefGoogle Scholar
  4. 4.
    L.S. Birnbaum, D.F. Staskal, Brominated flame retardants: cause for concern? Environ. Health Perspect. 112, 9–17 (2004)CrossRefGoogle Scholar
  5. 5.
    EHC-192, Flame retardants: a general introduction. International Program on Chemical Safety. (World Health Organization, Switzerland, 1997)Google Scholar
  6. 6.
    A.F. Lagalante, T.D. Oswald, Analysis of polybrominated diphenyl ethers (PBDEs) by liquid chromatography with negative-ion atmospheric pressure photoionization tandem mass spectrometry (LC/NI-APPI/MS/MS): application to house dust. Anal. Bioanal. Chem. 391, 2249–2256 (2008)CrossRefGoogle Scholar
  7. 7.
    K. Betts, Does a key PBDE break down in the environment? Environ. Sci. Technol. 42, 6781 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    J. Bezares-Cruz, C.T. Jafvert, I. Hua, Solar photodecomposition of decabromodiphenyl ether: products and quantum yield. Environ. Sci. Technol. 38, 4149–4156 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    P.H. Peterman, C.E. Orazio, K.P. Feltz, Sunlight photolysis of 39 mono-hepta PBDE congeners in lipid. Organohalogen Compd. 63, 357–360 (2003)Google Scholar
  10. 10.
    M. Barcellos da Rosa, H.-U. Krüger, S. Thomas, C. Zetzsch, Photolytic debromination and degradation of decabromodiphenyl ether, an exploratory kinetic study in toluene. Fresenius Environ. Bull. 12, 940–945 (2003)Google Scholar
  11. 11.
    J. Eriksson, N. Green, G. Marsh, A. Bergman, Photochemical decomposition of 15 polybrominated diphenyl ether congeners in methanol/water. Environ. Sci. Technol. 38, 3119–3125 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    W.-U. Palm, R. Kopetzky, W. Sossinka, W. Ruck, C. Zetzsch, Photochemical reactions of brominated diphenylethers in organic solvents and adsorbed on silicon dioxide in aqueous suspension. Organohalogen Compd. 66, 4101–4105 (2004)Google Scholar
  13. 13.
    I. Watanabe, R. Tatsukawa, Formation of brominated dibenzofurans from the photolysis of flame retardant decabromobiphenyl ether in hexane solution by UV and sun light. Bull. Environ. Contam. Toxicol. 39, 953–959 (1987)CrossRefGoogle Scholar
  14. 14.
    S. Ohta, H. Nishimura, T. Nakao, O. Aozasa, H. Miyata, Characterization of the photolysis of decabromodiphenyl ether and the levels of PBDEs as its photoproducts in atmospheric air of Japan. Organohalogen Compd. 52, 321–324 (2001)Google Scholar
  15. 15.
    G. Söderström, U. Sellström, C.A. de Wit, M. Tysklind, Photolytic debromination of decabromodiphenyl ether (BDE 209). Environ. Sci. Technol. 38, 127–132 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    I. Hua, N. Kang, C.T. Jafvert, J.R. Fábrega-Duque, Heterogeneous photo-chemical reactions of decabromodiphenyl ether. Environ. Toxicol. Chem. 22, 798–804 (2003)CrossRefGoogle Scholar
  17. 17.
    J.A. Tokarz 3rd, M.Y. Ahn, J. Leng, T.R. Filley, L. Nies, Reductive debromination of polybrominated diphenyl ethers in anaerobic sedment and a biomimetic system. Environ. Sci. Technol. 42, 1157–1164 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Y.-S. Keum, Q.X. Li, Reductive debromination of polybrominated diphenyl ethers by zero-valent iron. Environ. Sci. Technol. 39, 2280–2286 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    D. Chen, B. Mai, J. Song, Q. Sun, Y. Luo, X. Luo, E.Y. Zeng, R.C. Hale, Polybrominated di-phenyl ethers in birds of prey from Northern China. Environ. Sci. Technol. 41, 1828–1833 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    A.M. Geller, Ph.D. thesis, University of Bayreuth, Germany, 2008Google Scholar
  21. 21.
    L. Sanchez-Prado, M. Llompart, M. Lores, C. Garcia-Jares, R. Cela, Investigation of photodegradation products generated after UV-irradiation of five polybrominated diphenyl ethers using photo solid-phase microextraction. J. Chromatogr. A 1071, 85–92 (2005)CrossRefGoogle Scholar
  22. 22.
    S. Rayne, M.G. Ikonomou, M.D. Whale, Anaerobic microbial and photochemical degradation of 4, 4′-dibromodiphenyl ether. Water Res. 37, 551–560 (2003)CrossRefGoogle Scholar
  23. 23.
    Y.H. Shih, C.K. Wang, Photolytic degradation of polybromodiphenyl ethers under UV-lamp and solar irradiations. J. Hazard. Mat. 165, 34–38 (2009)CrossRefGoogle Scholar
  24. 24.
    C. Sun, D. Zhao, C. Chen, W. Ma, J. Zhao, TiO2-mediated photocatalytic debromination of decabromodiphenyl ether: kinetics and intermediates. Environ. Sci. Technol. 43, 157–162 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yassine Agguine
    • 3
  • Nadjia Laouedj
    • 1
  • Ahmed Bekka
    • 1
  • Zohra Bouberka
    • 2
  • Abdelouahab Nadim
    • 3
  • Said Eddarir
    • 4
  • Ulrich Maschke
    • 3
  1. 1.Laboratoire de synthèse et caractérisation des oxydesUniversité des Sciences et de la Technologie d’Oran «USTO»OranAlgeria
  2. 2.Laboratoire physico-chimie des matériaux-catalyse et environnementUniversité des Sciences et de la Technologie d’Oran «USTO»OranAlgeria
  3. 3.Unité Matériaux et Transformations—UMET (UMR CNRS N°8207), Bâtiment C6Université Lille 1—Sciences et TechnologiesVilleneuve d’Ascq CedexFrance
  4. 4.Laboratoire de Chimie Bioorganique et Macromoléculaire (LCBM), Faculté des Sciences et TechniquesUniversité Cadi AyyadMarrakechMorocco

Personalised recommendations