Advertisement

Recognizing Occupations Through Probabilistic Models: A Social View

  • Ming Shao
  • Yun Fu
Chapter

Abstract

This chapter is devoted to the problem of occupation recognition of human from photos.

References

  1. 1.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: European Conference on Computer Vision, pp. 469–481. Springer (2004)Google Scholar
  2. 2.
    Berg, T.L., Berg, E.C., Edwards, J., Maire, M., White, R., whye Teh, Y., Learned-miller, E., Forsyth, D.A.: Names and faces in the news. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 848–854. IEEE (2004)Google Scholar
  3. 3.
    Bourdev, L., Maji, S., Brox, T., Malik, J.: Detecting people using mutually consistent poselet activations. In: European Conference on Computer Vision, pp. 168–181. Springer (2010)Google Scholar
  4. 4.
    Bourdev, L., Maji, S., Malik, J.: Describing people: poselet-based attribute classification. In: International Conference on Computer Vision, pp. 1543–1550 (2011)Google Scholar
  5. 5.
    Bourdev, L., Malik, J.: Poselets: body part detectors trained using 3D human pose annotations. In: International Conference on Computer Vision, pp. 1365–1372 (2009)Google Scholar
  6. 6.
    Brox, T., Bourdev, L., Maji, S., Malik, J.: Object segmentation by alignment of poselet activations to image contours. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2225–2232. IEEE (2011)Google Scholar
  7. 7.
    Burges, C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)CrossRefGoogle Scholar
  8. 8.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011). Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm
  9. 9.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  10. 10.
    Desai, C., Ramanan, D., Fowlkes, C.: Discriminative models for multi-class object layout. In: International Conference on Computer Vision, pp. 229–236 (2009)Google Scholar
  11. 11.
    Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1778–1785. IEEE (2009)Google Scholar
  12. 12.
    Fathi, A., Hodgins, J.K., Rehg, J.M.: Social interactions: a first-person perspective. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1226–1233. IEEE (2012)Google Scholar
  13. 13.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 524–531. IEEE (2005)Google Scholar
  14. 14.
    Fu, Y., Guo, G., Huang, T.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1955–1976 (2010)CrossRefGoogle Scholar
  15. 15.
    Gallagher, A., Chen, T.: Understanding images of groups of people. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 256–263. IEEE (2009)Google Scholar
  16. 16.
    Kankuekul, P., Kawewong, A., Tangruamsub, S., Hasegawa, O.: Online incremental attribute-based zero-shot learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3657–3664. IEEE (2012)Google Scholar
  17. 17.
    Kumar, N., Berg, A., Belhumeur, P., Nayar, S.: Attribute and simile classifiers for face verification. In: International Conference on Computer Vision, pp. 365–372. IEEE (2009)Google Scholar
  18. 18.
    Lampert, C., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958. IEEE (2009)Google Scholar
  19. 19.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2169–2178. IEEE (2006)Google Scholar
  20. 20.
    Liu, S., Song, Z., Liu, G., Xu, C., Lu, H., Yan, S.: Street-to-shop: cross-scenario clothing retrieval via parts alignment and auxiliary set. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3330–3337. IEEE (2012)Google Scholar
  21. 21.
    Maji, S., Bourdev, L., Malik, J.: Action recognition from a distributed representation of pose and appearance. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3177–3184. IEEE (2011)Google Scholar
  22. 22.
    Naaman, M., Yeh, R., Garcia-Molina, H., Paepcke, A.: Leveraging context to resolve identity in photo albums. In: ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 178–187 (2005)Google Scholar
  23. 23.
    Parikh, D., Grauman, K.: Relative attributes. In: International Conference on Computer Vision, pp. 503–510. IEEE (2011)Google Scholar
  24. 24.
    Patterson, G., Hays, J.: Sun attribute database: discovering, annotating, and recognizing scene attributes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2751–2758. IEEE (2012)Google Scholar
  25. 25.
    Ramanathan, V., Yao, B., Fei-Fei, L.: Social role discovery in human events. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2475–2482. IEEE (2013)Google Scholar
  26. 26.
    Saleh, B., Farhadi, A., Elgammal, A.: Object-centric anomaly detection by attribute-based reasoning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 787–794. IEEE (2013)Google Scholar
  27. 27.
    Shahbaz Khan, F., Anwer, R.M., van de Weijer, J., Bagdanov, A.D., Vanrell, M., Lopez, A.M.: Color attributes for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3306–3313. IEEE (2012)Google Scholar
  28. 28.
    Shao, M., Li, L., Fu, Y.: Predicting professions through probabilistic model under social context. In: workshops at the 27th AAAI Conference on Artificial Intelligence (2013)Google Scholar
  29. 29.
    Song, Z., Wang, M., Hua, X., Yan, S.: Predicting occupation via human clothing and contexts. In: International Conference on Computer Vision, pp. 1084–1091 (2011)Google Scholar
  30. 30.
    Wang, G., Forsyth, D.: Joint learning of visual attributes, object classes and visual saliency. In: International Conference on Computer Vision, pp. 537–544. IEEE (2009)Google Scholar
  31. 31.
    Wang, G., Gallagher, A., Luo, J., Forsyth, D.: Seeing people in social context: recognizing people and social relationships. In: European Conference on Computer Vision, pp. 169–182. Springer (2010)Google Scholar
  32. 32.
    Wang, Y., Mori, G.: A discriminative latent model of object classes and attributes. In: European Conference on Computer Vision, pp. 155–168. Springer (2010)Google Scholar
  33. 33.
    Xia, S., Shao, M., Luo, J., Fu, Y.: Understanding kin relationships in a photo. IEEE Trans. Multimedia 14(4), 1046–1056 (2012)CrossRefGoogle Scholar
  34. 34.
    Yuan, X., Yan, S.: Visual classification with multi-task joint sparse representation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3493–3500. IEEE (2010)Google Scholar
  35. 35.
    Zhao, W., Chellappa, R., Phillips, P., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.College of Computer and Information ScienceNortheastern UniversityBostonUSA
  2. 2.Department of Electrical and Computer EngineeringNortheastern UniversityBostonUSA

Personalised recommendations