Multiple Object Tracking Based on a Hierarchical Clustering of Features Approach

  • Supannee Tanathong
  • Anan Banharnsakun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8397)

Abstract

One challenge in object tracking is to develop algorithms for automated detection and tracking of multiple objects in real time video sequences. In this paper, we have proposed a new method for multiple object tracking based on the hierarchical clustering of features. First, the Shi-Tomasi corner detection method is employed to extract the feature points from objects of interest and the hierarchical clustering approach is then applied to cluster and form them into feature blocks. These feature blocks will be used to track the objects frame by frame. Experimental results show evidence that the proposed method is highly effective in detecting and tracking multiple objects in real time video sequences.

Keywords

Multiple Object Tracking Feature Extraction Shi-Tomasi Corner Detection Hierarchical Clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yilmaz, A., Javed, O., Shah, M.: Object Tracking: A Survey. ACM Computing Surveys 38, 1–45 (2006)CrossRefGoogle Scholar
  2. 2.
    Li, C., Hua, T.: Human Action Recognition Based on Template Matching. Procedia Engineering 15, 2824–2830 (2011)CrossRefGoogle Scholar
  3. 3.
    Choi, H.-C., Park, J.-M., Choi, W.-S., Oh, S.-Y.: Vision-based Fusion of Robust Lane Tracking and Forward Vehicle Detection in a Real Driving Environment. International Journal of Automotive Technology 13, 653–669 (2012)CrossRefGoogle Scholar
  4. 4.
    Kyriacou, T., Bugmann, G., Lauria, S.: Vision-based Urban Navigation Procedures for Verbally Instructed Robots. Robotics and Autonomous Systems 51, 69–80 (2005)CrossRefGoogle Scholar
  5. 5.
    Smal, I., Meijering, E., Draegestein, K., Galjart, N., Grigoriev, I., Akhmanova, A., van Royen, M.E., Houtsmuller, A.B., Niessen, W.: Multiple Object Tracking in Molecular Bioimaging by Rao-Blackwellized Marginal Particle Filtering. Medical Image Analysis 12, 764–777 (2008)CrossRefGoogle Scholar
  6. 6.
    Wang, J., Luo, Z., Wong, E.C., Tan, C.: RFID Assisted Object Tracking for Automating Manufacturing Assembly Lines. In: Proceedings of IEEE International Conference on e-Business Engineering, pp. 48–53 (2007)Google Scholar
  7. 7.
    A Performance Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1615–1630 (2005)Google Scholar
  8. 8.
    Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: Real-Time Tracking of the Human Body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 780–785 (1997)CrossRefGoogle Scholar
  9. 9.
    Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis And Machine Intelligence 22, 888–905 (2000)CrossRefGoogle Scholar
  10. 10.
    Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and appearance. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 734–741 (2003)Google Scholar
  11. 11.
    Veenman, C.J., Reinders, M.J.T., Backer, E.: Resolving motion correspondence for densely moving points. IEEE Transactions on Pattern Analysis And Machine Intelligence 23, 54–72 (2001)CrossRefGoogle Scholar
  12. 12.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-Based Object Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 564–577 (2003)CrossRefGoogle Scholar
  13. 13.
    Blake, A., Isard, M.: Active Contours: The Application of Techniques From Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion. Springer, London (1998)CrossRefGoogle Scholar
  14. 14.
    Sbalzarini, I.F., Koumoutsakos, P.: Feature point tracking and trajectory analysis for video imaging in cell biology. Journal of Structural Biology 151, 182–195 (2005)CrossRefGoogle Scholar
  15. 15.
    Jang, D.-S., Choi, H.-I.: Active models for tracking moving objects. Pattern Recognition 33, 1135–1146 (2000)CrossRefGoogle Scholar
  16. 16.
    Zhou, Y., Rao, C., Lu, Q., Bai, X., Liu, W.: Multiple Feature Fusion for Object Tracking. In: Zhang, Y., Zhou, Z.-H., Zhang, C., Li, Y. (eds.) IScIDE 2011. LNCS, vol. 7202, pp. 145–152. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Qian, H., Mao, Y., Geng, J., Wang, Z.: Object Tracking with Self-Updating Tracking Window. In: Yang, C.C., et al. (eds.) PAISI 2007. LNCS, vol. 4430, pp. 82–93. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Huang, Z.Q., Jiang, Z.: An Object Tracking Scheme Based on Local Density. In: Cham, T.-J., Cai, J., Dorai, C., Rajan, D., Chua, T.-S., Chia, L.-T. (eds.) MMM 2007. LNCS, vol. 4351, Part I, pp. 166–175. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Welch, G., Bishop, G.: An introduction to the Kalman filter. Technical Report-TR 95-041, University of North Carolina, Department of Computer Science, USA (1995)Google Scholar
  20. 20.
    Ristic, B., Arulampalam, S., Gordon, N.J.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House (2004)Google Scholar
  21. 21.
    Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)CrossRefGoogle Scholar
  22. 22.
    Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature Extraction, Foundations and Applications. STUDFUZZ, vol. 207. Springer, Heidelberg (2006)CrossRefMATHGoogle Scholar
  23. 23.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)CrossRefGoogle Scholar
  24. 24.
    Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale space. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 1376–1381 (1998)CrossRefGoogle Scholar
  25. 25.
    Danker, A., Rosenfeld, A.: Blob detection by relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence 3, 79–92 (1981)CrossRefGoogle Scholar
  26. 26.
    Subirana-Vilanova, J.B., Sung, K.K.: Ridge Detection for the Perceptual Organization Without Edges. In: Proceedings of the Fourth International Conference on Computer Vision, pp. 57–64 (1993)Google Scholar
  27. 27.
    Shi, J., Tomasi, C.: Good features to track. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)Google Scholar
  28. 28.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn., pp. 520–528. Springer, New York (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Supannee Tanathong
    • 1
  • Anan Banharnsakun
    • 2
  1. 1.Laboratory for Sensor and Modeling, Department of GeoinformaticsUniversity of SeoulSeoulSouth Korea
  2. 2.Laboratory for Computational Intelligence, Faculty of Engineering at Si RachaKasetsart University Siracha CampusChonburiThailand

Personalised recommendations