Advertisement

Belief Propagation Method for Word Sentiment in WordNet 3.0

  • Andrzej Misiaszek
  • Przemysław Kazienko
  • Marcin Kulisiewicz
  • Łukasz Augustyniak
  • Włodzimierz Tuligłowicz
  • Adrian Popiel
  • Tomasz Kajdanowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8398)

Abstract

The main goal of the paper is to present that word’s sentiment can be discovered from propagation through well-defined word networks such as Word–Net. Therefore a new method for propagation of sentiment from a given word seed - Micro-WNOp corpus over the word network (WordNet 3.0) has been proposed and evaluated. The experimental studies proved that WordNet has a great potential in sentiment propagation, even if types of links (e.g. hyponymy, heteronymy etc.) and semantic meaning of words are not taken into consideration.

Keywords

sentiment analysis belief propagation relational propagation wordnet sentiwordnet complex networks linguistic network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bo, P., Lillian, L., Shivakumar, V.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL 2002 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)Google Scholar
  2. 2.
    Bruno, O., Brendan, T.: Sentiment classification of reviews using sentiwordnet. In: 9th IT & T Conference (2009)Google Scholar
  3. 3.
    Fan, R., Zhao, J., Chen, Y., Xu, K.: Anger is more influential than joy: Sentiment correlation in weibo (2013)Google Scholar
  4. 4.
    Kamps, J., Marx, M., Mokken, R.J., de Rijke, M.: Using WordNet to measure semantic orientation of adjectives. In: LREC (2004)Google Scholar
  5. 5.
    Prithviraj, S., Galileo, N., Mustafa, B., Lise, G.: Collective classification. In: Encyclopedia of Machine Learning, pp. 189–193. Springer (2010)Google Scholar
  6. 6.
    Rudy, P., Mike, T.: Sentiment analysis: A combined approach. Journal of Informetrics 3(2), 143–157 (2009)CrossRefGoogle Scholar
  7. 7.
    Stefano, B., Andrea, E., Fabrizio, S.: Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In: LREC 2010, vol. 10, pp. 2200–2204 (2010)Google Scholar
  8. 8.
    Turney, P.D., Littman, M.L.: Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems 21(4), 315–346 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andrzej Misiaszek
    • 1
  • Przemysław Kazienko
    • 1
  • Marcin Kulisiewicz
    • 1
  • Łukasz Augustyniak
    • 1
  • Włodzimierz Tuligłowicz
    • 1
  • Adrian Popiel
    • 1
  • Tomasz Kajdanowicz
    • 1
  1. 1.Faculty of Computer Science and Management, Institute of InformaticsWroclaw University of TechnologyWroclawPoland

Personalised recommendations