Smartphone Interactions Change for Different Intimacy Contexts

  • Mattia Gustarini
  • Katarzyna Wac
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 130)


Emerging mobile applications on a growing scale adapt their functionalities and the way these are provided, leveraging the user’s contextual information, without the need of explicit settings setup from the users side. However, this contextual information, e.g., location and other environmental information, may not fully represent the users’ context. There are other contextual features related to the user’s social context that may be considered. In this paper we introduce an example of such contextual information - the intimacy context information, and we investigate if smartphone users change the way they interact with their smartphones depending on their intimacy state. We performed a 4 weeks 20-users study, with participants using their own smartphones in daily life environments, and being sampled for their intimacy perception. Our results show how intimacy context changes and relate to the smartphone usage. Therefore our research contributes by introducing new context information - intimacy, which can be leveraged by developers to create mobile applications automatically adapting to provide different services, functionalities and content depending on the intimacy level of the situation the user is in.


context-awareness self-application adaptation mobile application interaction design social context 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tossell, C., Kortum, P., Shepardb, C., Rahmati, A., Zhong, L.: An empirical analysis of smartphone personalisation: measurement and user variability. Behav. Inf. Technol. 31, 995–1010 (2012)Google Scholar
  2. 2.
    Geihs, K., Wagner, M.: Context-awareness for self-adaptive applications in ubiquitous computing environments. In: Vinh, P.C., Hung, N.M., Tung, N.T., Suzuki, J. (eds.) ICCASA 2012. LNCIST, vol. 109, pp. 108–120. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Efstratiou, C., Cheverst, K., Friday, A.: An Architecture for the Effective Support of Adaptive Context-Aware Applications. In: Tan, K.-L., Franklin, M.J., Lui, J.C.-S. (eds.) MDM 2001. LNCS, vol. 1987, pp. 15–26. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Geihs, K.: Self-Adaptivity from Different Application Perspectives. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 7475, pp. 376–392. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Evers, C., Kniewel, R., Geihs, K., Schmidt, L.: Achieving user participation for adaptive applications. In: Bravo, J., López-de-Ipiña, D., Moya, F. (eds.) UCAmI 2012. LNCS, vol. 7656, pp. 200–207. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Pei, L., Guinness, R., Chen, R., Liu, J., Kuusniemi, H., Chen, Y., Chen, L., Kaistinen, J.: Human behavior cognition using smartphone sensors. Sensors 13, 1402–1424 (2013)CrossRefGoogle Scholar
  7. 7.
    Gerstein, R.S.: Intimacy and privacy. Ethics 89, 76–81 (1978)CrossRefGoogle Scholar
  8. 8.
    Reiman, J.H.: Privacy, intimacy, and personhood. Philos. Public Aff. 6, 26–44 (1976)Google Scholar
  9. 9.
    Gustarini, M., Wac, K.: Estimating People Perception of Intimacy in Daily Life from Context Data Collected with Their Mobile Phone. Nokia workshop at Pervasive (2012)Google Scholar
  10. 10.
    Raento, M., Oulasvirta, A., Eagle, N.: Smartphones: An Emerging Tool for Social Scientists. Sociol. Methods Res. 37, 426–454 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rahmati, A., Zhong, L.: Studying Smartphone Usage: Lessons from a Four-Month Field Study. IEEE Trans. Mob. Comput. 12, 1417–1427 (2013)CrossRefGoogle Scholar
  12. 12.
    Haubo, R., Christensen, B.: Analysis of ordinal data with cumulative link models — estimation with the R-package ordinalGoogle Scholar
  13. 13.
    Ferreira, D., Dey, A.: Understanding human-smartphone concerns: a study of battery life. Pervasive Comput., 19–33 (2011)Google Scholar
  14. 14.
    Shin, C., Hong, J.-H., Dey, A.K.: Understanding and prediction of mobile application usage for smart phones. In: UbiComp, p. 173. ACM Press, New York (2012)CrossRefGoogle Scholar
  15. 15.
    Böhmer, M., Hecht, B., Schöning, J., Kruger, A., Bauer, G.: Falling asleep with angry birds, facebook and kindle: a large scale study on mobile application usage. In: MobileHCI (2011)Google Scholar
  16. 16.
    Ickin, S., Wac, K., Fiedler, M., Janowski, L., Hong, J.-H., Dey, A.K.: Factors influencing quality of experience of commonly used mobile applications. IEEE Commun. Mag. (2012)Google Scholar
  17. 17.
    Floch, J., Frà, C., Fricke, R.: Playing MUSIC—building context-aware and self-adaptive mobile applications. Softw. Pract. Exp., 359–388 (2012)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2014

Authors and Affiliations

  • Mattia Gustarini
    • 1
  • Katarzyna Wac
    • 1
  1. 1.Institute of Service ScienceUniversity of GenevaCarougeSwitzerland

Personalised recommendations