Advertisement

Efficient Routing in Data Center with Underlying Cayley Graph

  • Miguel Camelo
  • Dimitri Papadimitriou
  • Lluís Fàbrega
  • Pere Vilà
Part of the Studies in Computational Intelligence book series (SCI, volume 549)

Abstract

Nowadays data centers are becoming huge facilities with hundreds of thousands of nodes, connected through a network. The design of such interconnection networks involves finding graph models that have good topological properties and that allow the use of efficient routing algorithms. Cayley Graphs, a kind of graphs that represents an algebraic group, meet these properties and therefore have been proposed as a model for these networks. In this paper we present a routing algorithm based on Shortlex Automatic Structure, which can be used on any interconnection network with an underlying Cayley Graph (of some finite group). We show that our proposal computes the shortest path between any two vertices with low time and space complexity in comparison with traditional routing algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cisco System Inc.: Cisco Cloud Computing - Data Center Strategy, Architecture, and Solutions. Point of View White Paper for U.S. Public Sector, 1st edn. (2009)Google Scholar
  2. 2.
    Heydemann, M.-C., Ducourthial, B.: Graph Symmetry. NATO ASI Series, pp. 167–224. Springer Netherlands (1997) ISBN 978-90-481-4885-1Google Scholar
  3. 3.
    Meier, J.: Groups, Graphs and Trees: An Introduction to the Geometry of Infinite Groups. Cambridge University Press (2008) ISBN 978-0521719773Google Scholar
  4. 4.
    Schibell, S.T., Stafford, R.M.: Processor Interconnection Networks from Cayley Graph. Discrete Applied Mathematics 40(3), 333–357 (1992) ISSN 0166-218XGoogle Scholar
  5. 5.
    Shin, J., Sirer, E., Weatherspoon, H., Kirovski, D.: On the feasibility of completely wireless datacenters. IEEE/ACM Transaction on Networking 21(5), 1666–1679 (2013)Google Scholar
  6. 6.
    Xiao, W., Liang, H., Parhami, B.: A Class Of Data-Center Network Models Offering Symmetry, Scalability, and Reliability. Parallel Processing Letters (2012)Google Scholar
  7. 7.
    Loz, E., Siran, J.: New record graphs in the degree-diameter problem. Australasian Journal of Combinatorics 41, 63–80 (2008)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Xiao, W., Parhami, B.: Cayley graphs as models of deterministics small-world networks. Information Processing Letters 97(3), 115–117 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Stamoulis, G.D., Tsitsiklis, J.N.: Efficient routing Scheme for Multiple Broadcasts in Hypercubes. IEEE Trans. on Parallel and Distributed Systems 4(7), 725–739 (1993)CrossRefGoogle Scholar
  10. 10.
    Stamoulis, G.D., Tsitsiklis, J.N.: The Efficiency of Greedy Routing in Hypercubes and Butterflies. IEEE Transaction on Communication 42(11), 3051–3061 (1994)CrossRefGoogle Scholar
  11. 11.
    Kiasari, A.E., Sarbazi-Azad, H.: Analytic performance comparison of hypercubes and star graphs with implementation constraints. Journal of Computer and System Sciences (2007)Google Scholar
  12. 12.
    Epstein, D., Cannon, J., Holt, D., Levy, S., Paterson, M., Thurson, W.: Word Processing in Groups. Jones and Bartlett Publishers (1992) ISBN 0-86720-244-0Google Scholar
  13. 13.
    Akers, S., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection networks. IEEE Transactions on Computers 38(4), 555–566 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Tang, K., Arden, B.: Vertex-transitivity and routing for Cayley graphs in GCR representations. In: ACM Symposium on Applied Computing, SAC, pp. 1180–1187 (1992)Google Scholar
  15. 15.
    Wang, L., Tang, K.: Topology-Based Routing for Xmesh in Wireless Sensor Networks. In: Powell, S., Shim, J.P. (eds.) Wireless Technology. LNEE, vol. 44, pp. 229–239. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Ryu, J., Noel, E., Tang, K.: Fault-tolerant Routing on Borel Cayley Graph. In: Next Generation Networking Symposium, IEEE ICC 2012, pp. 2872–2877 (2012)Google Scholar
  17. 17.
    Holt, D.: The Warwick Automatic Groups Software. In: Geometrical and Computational Perspectives on Infinite Groups. Amer. Math. Soc. DIMACS Series, vol. 25, pp. 69–82 (1995)Google Scholar
  18. 18.
    Even, S., Goldreich, O.: The minimal-length generating sequence problem is NP-Hard. Journal of Algorithms 2, 311–313 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Cannon, J.: Construction of defining relators for finite groups. Discrete Math. 5, 105–129 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory - Presentation of Groups in Terms of Generators and Relations, 2nd revised edn. Dover Publications (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Miguel Camelo
    • 1
  • Dimitri Papadimitriou
    • 2
  • Lluís Fàbrega
    • 1
  • Pere Vilà
    • 1
  1. 1.IIiA, Universitat de GironaGironaSpain
  2. 2.Alcatel-Lucent BellAntwerpBelgium

Personalised recommendations