Advertisement

Real-Time Near-Optimal Feedback Control of Aggressive Vehicle Maneuvers

  • Panagiotis Tsiotras
  • Ricardo Sanz Diaz
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 455)

Abstract

Optimal control theory Patrick J. can be used to generate aggressive maneuvers for vehicles under a variety of conditions using minimal assumptions. Although optimal control provides a very powerful framework for generating aggressive maneuvers utilizing fully nonlinear vehicle and tire models, its use in practice is hindered by the lack of guarantees of convergence, and by the typically long time to generate a solution, which makes this approach unsuitable for real-time implementation unless the problem obeys certain convexity and/or linearity properties. In this chapter, we investigate the use of statistical interpolation (e.g., kriging) in order to synthesize on-the-fly near-optimal feedback control laws from pre-computed optimal solutions. We apply this methodology to the challenging scenario of generating a minimum-time yaw rotation maneuver of a speeding vehicle in order to change its posture prior to a collision with another vehicle, in an effort to remedy the effects of a head-on collision. It is shown that this approach offers a potentially appealing option for real-time, near-optimal, robust trajectory generation.

Keywords

Optimal Control Problem Optimal Trajectory Model Predictive Control Generalize Little Square Rear Axle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Partial support for the work presented in this chapter has been provided by NSF through award no. CMMI-1234286 and ARO via MURI award no. W911NF-11-1-0046.

References

  1. 1.
    Adams J (2012) An interpolation approach to optimal trajectory planning for helicopter unmanned aerial vehicles. Master’s thesis, Naval Postgraduate SchoolGoogle Scholar
  2. 2.
    Assadian F, Hancock M (2005) A comparison of yaw stability control strategies for the active differential. In: Proceedings of IEEE international symposium on industrial electronics ISIE 2005, vol 1, pp 373–378. doi: 10.1109/ISIE.2005.1528939
  3. 3.
    Becerra VM (2011) PSOPT optimal control solver user manualGoogle Scholar
  4. 4.
    Betts JT (1998) Survey of numerical methods for trajectory optimization. AIAA J Guidance Control Dyn 21(2):193–207CrossRefzbMATHGoogle Scholar
  5. 5.
    Betts JT, Huffman WP (1997) Sparse optimal control software SOCS. Mathematics and engineering analysis technical document mealr-085, Boeing Information and Support Services, The Boeing Company, SeattleGoogle Scholar
  6. 6.
    Chakraborty I, Tsiotras P (2011) Mitigation of unavoidable T-bone colisions at intersections through aggressive maneuvering. In: Proceedings of the 50th IEEE conference on decision and control and European control conference, Orlando, FL, pp 3264–3269. doi: 10.1109/CDC.2011.6161241
  7. 7.
    Chakraborty I, Tsiotras P, Diaz RS (2013) Time-optimal vehicle posture control to mitigate unavoidable collisions using conventional control inputs. In: American control conference, Washington, DC, pp 2165–2170Google Scholar
  8. 8.
    Cressie N (1990) The origins of kriging. Math Geol 22(3):239–252CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dever C, Mettler B, Feron E, Popovic J, McConley M (2006) Nonlinear trajectory generation for autonomous vehicles via parameterized maneuver classes. J Guidance Control Dyn 29(2):289–302CrossRefGoogle Scholar
  10. 10.
    del Re L, Allgöwer FF, Glielmo L, Guardiola C, Kolmanovsky I (2010) Automotive model predictive control: models, methods and applications. Lecture notes in control and information sciences. Springer, BerlinGoogle Scholar
  11. 11.
    Di Cairano S, Tseng HE (2010) Driver-assist steering by active front steering and differential braking: design, implementation and experimental evaluation of a switched model predictive control approach. In: Proceedings of 49th IEEE conference on decision and control, pp 2886–2891. doi: 10.1109/CDC.2010.5716954
  12. 12.
    Doe R (2012) European new car assessment programme, Results (www.euroncap.com), Brussels Belgium
  13. 13.
    Fildes B, Lane J, Lenard J, Vulvan A (1994) Passenger cars and ocupant injury: side impact crashes. Monash University, Accident Research Center, Report No. 134, Canberra, AustraliaGoogle Scholar
  14. 14.
    Ghosh P, Conway B (2012) Near-optimal feedback strategies for optimal control and pursuit-evasion games: a spatial statistical approach. In: AIAA/AAS astrodynamics specialist conference, Minneapolis, MN, AIAA Paper 2012–4590. doi: 10.2514/6.2012-4590
  15. 15.
    Goldberger A (1962) Best linear unbiased prediction in the generalized linear regression model. J Am Stat Assoc 57(298):369–375CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Handcock MS, Stein ML (1993) A Bayesian analysis of kriging. Technometrics 35(4):403–410CrossRefGoogle Scholar
  17. 17.
    Hargraves CR, Paris SW (1987) Direct tracjectory optimization using nonlinear programming and collocation. AIAA J Guidance Control Dyn 10(4):338–342CrossRefzbMATHGoogle Scholar
  18. 18.
    Huang D, Allen T, Notz W, Miller R (2006) Sequential kriging optimization using multiple-fidelity evaluations. Struct Multi Optim 32(5):369–382CrossRefGoogle Scholar
  19. 19.
    Jazar RN (2008) Vehicle dynamics: theory and application. Springer, New YorkCrossRefGoogle Scholar
  20. 20.
    Kleijnen J (2009) Kriging metamodeling in simulation: a review. Eur J Oper Res 192(3):707–716CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Lophaven SN, Nielsen HB, Søndergaard J (2002) DACE: a MATLAB kriging toolbox, Technical report, Technical University of DenmarkGoogle Scholar
  22. 22.
    MacKay DJC (1998) Introduction to Gaussian processes. NATO ASI Ser F Comput Syst Sci 168:133–166Google Scholar
  23. 23.
    Oberle H, Grimm W (1985) BNDSCO: a program for the numerical solution of optimal control problems. English translation of DFVLR-Mitt. 85–05Google Scholar
  24. 24.
    Pacejka H, Bakker E, Nyborg L (1987) Tyre modelling for use in vehicle dynamics studies. SAE paper 870421Google Scholar
  25. 25.
    Rao AV, Benson D, Darby CL, Mahon B, Francolin C, Patterson M, Sanders I, Huntington GT (2011) User’s manual for GPOPS version 4.x: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive pseudospectral methods. http://www.gpops.org/gpopsManual.pdf
  26. 26.
    Riekert P, Schunck TE (1940) Zür Fahrmechanik des gummibereiften Kraftfahrzeugs. Arch Appl Mech 11(3):210–224Google Scholar
  27. 27.
    Ross IM (2003) User’s manual for DIDO: a MATLAB application package for solving optimal control problems. NPS technical report MAE-03-005, Naval Postgraduate School, Monterey, CAGoogle Scholar
  28. 28.
    Schwartz AL (1996) Theory and implementation of numerical methods based on Runge-Kutta integration for solving optimal control problems. Ph.D. thesis, Berkeley, University of CaliforniaGoogle Scholar
  29. 29.
  30. 30.
    Simpson T, Martin J, Booker A, Giunta A, Haftka R, Renaud J, Kleijnen J (2005) Use of kriging models to approximate deterministic computer models. AIAA J 43(4):853–863CrossRefGoogle Scholar
  31. 31.
    Tang J, Singh A, Goehausen N, Abbeel P (2010) Parameterized maneuver learning for autonomous helicopter flight. In: 2010 IEEE international conference on robotics and automation (ICRA), IEEE, pp 1142–1148Google Scholar
  32. 32.
    Simpson TW, Mauery TM, Korte JJ, Mistree F (2001) Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J 39(12):2233–2241Google Scholar
  33. 33.
    Van Beers W, Kleijnen J (2004) Kriging interpolation in simulation: a survey. In: Proceedings of the 2004 winter simulation conference, vol 1. IEEEGoogle Scholar
  34. 34.
    van Zanten AT (2002) Evolution of electronic control system for improving the vehicle dynamic behavior. In: Advanced vehicle control conference (AVEC), Hiroshima, JapanGoogle Scholar
  35. 35.
    Velenis E, Frazzoli E, Tsiotras P (2010) Steady-state cornering equilibria and stabilization for a vehicle during extreme operating conditions. Int J Veh Auton Syst 8(2–4):217–241. doi: 10.1504/IJVAS.2010.035797 CrossRefGoogle Scholar
  36. 36.
    Velenis E, Katzourakis D, Frazzoli E, Tsiotras P, Happee R (2011) Steady-state drifting stabilization of RWD vehicles. Control Eng Pract 19(11):1363–1376. doi: 10.1016/j.conengprac.2011.07.010 CrossRefGoogle Scholar
  37. 37.
    Velenis E, Tsiotras P, Lu J (2007) Modeling aggressive maneuvers on loose surfaces: the cases of trail-braking and pendulum-turn. In: European control conference, Kos, Greece, pp 1233–1240Google Scholar
  38. 38.
    Velenis E, Tsiotras P, Lu J (2008) Optimality properties and driver input parameterization for trail-braking cornering. Eur J Control 14(4):308–320. doi: 10.3166/EJC.14.308-320 CrossRefzbMATHGoogle Scholar
  39. 39.
    Yamamoto M (1991) Active control strategy for improved handling and stability. SAE Trans 100(6):1638–1648Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Aerospace EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Aerospace EngineeringUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations