Modeling Responsiveness of Decentralized Service Discovery in Wireless Mesh Networks

  • Andreas Dittrich
  • Björn Lichtblau
  • Rafael Rezende
  • Miroslaw Malek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8376)

Abstract

In service networks, discovery plays a crucial role as a layer where providers can be published and enumerated. This work focuses on the responsiveness of the discovery layer, the probability to operate successfully within a deadline, even in the presence of faults. It proposes a hierarchy of stochastic models for decentralized discovery and uses it to describe the discovery of a single service using three popular protocols. A methodology to use the model hierarchy in wireless mesh networks is introduced. Given a pair requester and provider, a discovery protocol and a deadline, it generates specific model instances and calculates responsiveness. Furthermore, this paper introduces a new metric, the expected responsiveness distance der, to estimate the maximum distance from a provider where requesters can still discover it with a required responsiveness. Using monitoring data from the DES testbed at Freie Universität Berlin, it is shown how responsiveness and der of the protocols change depending on the position of nodes and the link qualities in the network.

Keywords

Real-time systems Responsiveness Service discovery Wireless mesh networks Markov Models Probabilistic Breadth-First Search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F., Wang, X.: A survey on wireless mesh networks. IEEE Communications Magazine 43(9), S23–S30 (2005)Google Scholar
  2. 2.
    Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications 18(3), 535–547 (2000)CrossRefGoogle Scholar
  3. 3.
    Blywis, B., Günes, M., Juraschek, F., Hahm, O.: Properties and topology of the DES-testbed. Tech. Rep. TR-B-11-02, FU Berlin, Germany (March 2011)Google Scholar
  4. 4.
    Bohnenkamp, H., van der Stok, P., Hermanns, H., Vaandrager, F.: Cost-optimization of the IPv4 zeroconf protocol. In: International Conference on Dependable Systems and Networks, pp. 531–540. IEEE (June 2003)Google Scholar
  5. 5.
    Couto, D.S.J.D., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path metric for multi-hop wireless routing. In: 9th Annual International Conference on Mobile Computing and Networking, pp. 134–146. ACM (2003)Google Scholar
  6. 6.
    Dabrowski, C.E., Mills, K.L.: Understanding self-healing in service-discovery systems. In: Workshop on Self-healing Systems (WOSS), pp. 15–20. ACM (2002)Google Scholar
  7. 7.
    Dabrowski, C.E., Mills, K.L., Elder, J.: Understanding consistency maintenance in service discovery architectures during communication failure. In: 3rd International Workshop on Software and Performance (WOSP), pp. 168–178. ACM (2002)Google Scholar
  8. 8.
    Dabrowski, C.E., Mills, K.L., Elder, J.: Understanding consistency maintenance in service discovery architectures in response to message loss. In: 4th Annual International Workshop on Active Middleware Services, pp. 51–60 (2002)Google Scholar
  9. 9.
    Dittrich, A., Kaitovic, I., Murillo, C., Rezende, R.: A model for evaluation of user-perceived service properties. In: International Symposium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1508–1517. IEEE (May 2013)Google Scholar
  10. 10.
    Dittrich, A., Salfner, F.: Experimental responsiveness evaluation of decentralized service discovery. In: International Symposium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1–7. IEEE (April 2010)Google Scholar
  11. 11.
    Edwards, W.K.: Discovery systems in ubiquitous computing. IEEE Pervasive Computing 5(2), 70–77 (2006)CrossRefGoogle Scholar
  12. 12.
    IEEE standard for information technology – telecommunications and information exchange between systems – […]. IEEE Std 802.11-2012. IEEE Standards Association, pp. 1–2793 (2012)Google Scholar
  13. 13.
    Lichtblau, B., Dittrich, A.: Probabilistic breadth-first search – a method for evaluation of network-wide broadcast protocols. In: International Conference on New Technologies, Mobility and Security (NTMS). IEEE (to appear, April 2014)Google Scholar
  14. 14.
    Malek, M.: Responsive systems: A marriage between real time and fault tolerance. In: Cin, M.D., Hohl, W. (eds.) Fault-Tolerant Computing Systems, Informatik-Fachberichte, vol. 283, pp. 1–17. Springer (1991)Google Scholar
  15. 15.
    Milanovic, N., Milic, B.: Automatic generation of service availability models. IEEE Trans. on Services Computing 4(1), 56–69 (2011)CrossRefGoogle Scholar
  16. 16.
    Naimi, A.M., Jacquet, P.: One-hop delay estimation in 802.11 ad hoc networks using the OLSR protocol. Tech. Rep. RR-5327, INRIA, Le Chesnay, France (2004)Google Scholar
  17. 17.
    Oliveira, R., Bernardo, L., Pinto, P.: Modelling delay on IEEE 802.11 MAC protocol for unicast and broadcast nonsaturated traffic. In: Wireless Communications and Networking Conference (WCNC), pp. 463–467. IEEE (March 2007)Google Scholar
  18. 18.
    Raptis, P., Vitsas, V., Paparrizos, K.: Packet delay metrics for IEEE 802.11 distributed coordination function. Mobile Networks and Applications 14(6), 772–781 (2009)CrossRefGoogle Scholar
  19. 19.
    Rezende, R., Dittrich, A., Malek, M.: User-perceived instantaneous service availability evaluation. In: Pacific Rim International Symposium on Dependable Computing (PRDC), pp. 273–282. IEEE (December 2013)Google Scholar
  20. 20.
    Sahner, R.A., Trivedi, K.S.: Performance and reliability analysis using directed acyclic graphs. IEEE Trans. on Software Engineering SE-13 (10), 1105–1114 (1987)Google Scholar
  21. 21.
    Trivedi, K.S.: SHARPE (symbolic hierarchical automated reliability and performance evaluator). Software (February 2010), http://sharpe.pratt.duke.edu
  22. 22.
    Zhu, F., Mutka, M., Ni, L.: Service discovery in pervasive computing environments. IEEE Pervasive Computing 4, 81–90 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andreas Dittrich
    • 1
  • Björn Lichtblau
    • 2
  • Rafael Rezende
    • 1
  • Miroslaw Malek
    • 1
  1. 1.Advanced Learning and Research Institute (ALaRI)Università della Svizzera italianaLuganoSwitzerland
  2. 2.Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations