A Compact Walking Robot – Flexible Research and Development Platform

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 267)

Abstract

In the paper new six-legged robot Messor II is described. The new machine is the improved version of the previous robot Messor. The current design has better power to mass ratio. Additionally new servos, which power the joint of the robot, allows for better control and motion execution. The paper contains three main parts. In the first section mechanical design is presented. Then, the electronic part of the robot is described. Next the control system of the robot is outlined.

Keywords

walking robot hexapod design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raibert, M.H.: Legged robots that balance. Massachusetts Institute of Technology, Cambridge (1986)Google Scholar
  2. 2.
    Walas, K., Belter, D., Kasiński, A.: Control and environment sensing system for a six-legged robot. Journal of Automation, Mobile Robotics & Intelligent Systems 2, 26–31 (2008)Google Scholar
  3. 3.
    Belter, D., Skrzypczynski, P.: A biologically inspired approach to feasible gait learning for a hexapod robot. Applied Mathematics and Computer Science 20, 69–84 (2010)MATHGoogle Scholar
  4. 4.
    Walas, K., Belter, D.: Messor – Versatile Walking Robot for Search and Rescue Missions. Journal of Automation, Mobile Robotics & Intelligent Systems 5, 28–34 (2011)Google Scholar
  5. 5.
    Walas, K., Belter, D.: Supporting locomotive functions of a six-legged walking robot. Int. J. Appl. Math. Comput. Sci. 21, 363–377 (2011)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Łabecki, P., Walas, K., Kasinski, A.: Autonomous stair climbing with multisensor feedback. In: Proc. of the 18th World Congress, The International Federation of Automatic Control, Milano, Italy, pp. 8159–8164 (2011)Google Scholar
  7. 7.
    Walas, K., Kasinski, A.J.: Discrete event controller for urban obstacles negotiation with walking robot. In: IEEE IROS, pp. 181–186 (2012)Google Scholar
  8. 8.
    Belter, D., Skrzypczynski, P.: Posture optimization strategy for a statically stable robot traversing rough terrain. In: IEEE IROS, pp. 2204–2209 (2012)Google Scholar
  9. 9.
    Belter, D., Skrzypczynski, P.: Rough terrain mapping and classification for foothold selection in a walking robot. J. Field Robotics 28, 497–528 (2011)CrossRefMATHGoogle Scholar
  10. 10.
    Belter, D., Skrzypczynski, P.: Precise self-localization of a walking robot on rough terrain using parallel tracking and mapping. Industrial Robot: An International Journal 40, 229–237 (2013)CrossRefGoogle Scholar
  11. 11.
    Walas, K.: Terrain Classification Using Vision, Depth and Tactile Perception. In: RSS Workshop RGB-D: Advanced Reasoning with Depth Cameras (2013); archived on the website of the workshopGoogle Scholar
  12. 12.
    Song, S.M., Waldron, K.: Machines that Walk. MIT Press, Cambridge (1989)Google Scholar
  13. 13.
    Krotkov, E., Bares, J., Kanade, T., Mitchell, T., Simmons, R., Whittaker, W.: Ambler: a six-legged planetary rover. In: International Conference on Advanced Robotics,Robots in Unstructured Environments (ICAR 1991), Pisa, Italy, pp. 712–722 (1991)Google Scholar
  14. 14.
    Spenko, M., Haynes, G.C., Saunders, J.A., Cutkosky, M.R., Rizzi, A.A., Full, R.J., Koditschek, D.E.: Biologically inspired climbing with a hexapedal robot. J. Field Robotics 25, 223–242 (2008)CrossRefGoogle Scholar
  15. 15.
    Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: Team, t.B.D.: Bigdog, the rough-terrain quadruped robot. In: Proc. of the 17th World Congress, The International Federation of Automatic Control, Seoul, Korea, pp. 10822–10825 (2008)Google Scholar
  16. 16.
    Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.: Fast, robust quadruped locomotion over challenging terrain. In: IEEE ICRA, pp. 2665–2670 (2010)Google Scholar
  17. 17.
    Barasuol, V., Buchli, J., Semini, C., Frigerio, M., de Pieri, E.R., Caldwell, D.G.: A reactive controller framework for quadrupedal locomotion on challenging terrain. In: IEEE ICRA, pp. 2554–2561 (2013)Google Scholar
  18. 18.
    Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M.A., Remy, C.D., Siegwart, R.: StarlETH: A compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: Azad, A.K.M., Cowan, N.J., Tokhi, M.O., Virk, G.S. (eds.) Proceedings of the 15th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, pp. 483–490. World Scientific, Singapore (2012)Google Scholar
  19. 19.
    Rönnau, A., Heppner, G., Pfotzer, L., Dillmann, R.: LAURON V: Optimized Leg Configuration for the Design of a Bio-Inspired Walking Robot. In: Waldron, K.J., Tokhi, M.O., Virk, G.S. (eds.) Nature-Inspired Mobile Robotics, Proceedings of the 16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, pp. 563–570. World Scientific, Singapore (2013)Google Scholar
  20. 20.
    Bartsch, S., Birnschein, T., Römmermann, M., Hilljegerdes, J., Kühn, D., Kirchner, F.: Development of the six-legged walking and climbing robot Space Climber. J. Field Robotics 29, 506–532 (2012)CrossRefGoogle Scholar
  21. 21.
    Schilling, M., Paskarbeit, J., Schmitz, J., Schneider, A., Cruse, H.: Grounding an internal body model of a hexapod walker control of curve walking in a biologically inspired robot. In: IEEE IROS, pp. 2762–2768 (2012)Google Scholar
  22. 22.
    Gorner, M., Wimbock, T., Baumann, A., Fuchs, M., Bahls, T., Grebenstein, M., Borst, C., Butterfass, J., Hirzinger, G.: The DLR-Crawler: A testbed for actively compliant hexapod walking based on the fingers of DLR-Hand II. In: Proc. IEEE/RSJ Int. Conference on Intelligent Robots and Systems (IROS 2008), Nice, France, pp. 1525–1531 (2008)Google Scholar
  23. 23.
    de Santos, P.G., Cobanoa, J., Garcia, E., Estremera, J., Armada, M.: A six-legged robot-based system for humanitarian demining missions. Mechatronics 17, 417–430 (2007)CrossRefGoogle Scholar
  24. 24.
    Kenzo, N., Qing-Jiu, H.: Humanitarian mine detecting six-legged walking robot and hybrid neuro walking control with position/force control. Mechatronics 13, 773–790 (2003)CrossRefGoogle Scholar
  25. 25.
    Belter, D., Labecki, P., Skrzypczynski, P.: Estimating Terrain Elevation Maps from Sparse and Uncertain Multi-Sensor Data. In: IEEE 2012 International Conference on Robotics and Biomimetics, pp. 715–722. IEEE (2012)Google Scholar
  26. 26.
    Georg, K., David, M.: Parallel Tracking and Mapping for Small AR Workspaces. In: Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2007), Nara, Japan (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Control and Information EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations