Advertisement

Empirical Likelihood Confidence Intervals: An Application to the EU-SILC Household Surveys

  • Yves G. Berger
  • Omar De La Riva Torres
Chapter
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

Berger and De La Riva Torres (2012), proposed a proper empirical likelihood approach which can be used to construct design-based confidence intervals. The proposed approach gives confidence intervals which may have better coverages than standard confidence intervals, which relies on normality, variance estimates and linearisation. The proposed approach does not rely on variance estimates, re-sampling or linearisation, even when the point estimator is not linear and does not have a normal distribution. It can be also used to construct confidence intervals of means, regressions coefficients, quantiles and poverty indicators. The proposed approach is less computational intensive than rescaled bootstrap (Rao and Wu 1988) which can be unstable and may not have the intended coverages (Berger and De La Riva Torres 2012). We apply the proposed approach to a measure of poverty based upon the European Union Statistics on Income and Living Conditions (eu-silc) survey (Eurostat 2012). Confidence intervals of the persistent-risk-of-poverty indicator are estimated for the overall population and six sub-population domains determined by cross-classifying age groups and gender. This work was supported by consulting work for the Net-SILC2 project (Atkinson and Marlier 2010).

Keywords

Design-based approach Estimating equations Hájek estimator Horvitz–Thompson estimator Stratification Ultimate cluster approach Unequal inclusion probabilities 

References

  1. Atkinson, A.B., Marlier, E.: Income and Living Conditions in Europe. Office for Official Publications, Luxembourg (2010). http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-31-10-555/EN/KS-31-10-555-EN.PDF
  2. Berger, Y.G.: Rate of convergence to normal distribution for the Horvitz-Thompson estimator. J. Stat. Plan. Inference 67, 209–226 (1998)CrossRefzbMATHGoogle Scholar
  3. Berger, Y.G., De La Riva Torres, O.: An Empirical Likelihood Approach for Inference Under Complex Sampling Design. Southampton Statistical Sciences Research Institute, Southampton (2012). http://eprints.soton.ac.uk/337688
  4. Berger, Y.G., Skinner, C.J.: Variance estimation of a low-income proportion. J. R. Stat. Soc. Ser. C (Appl. Stat.) 52, 457–468 (2003)Google Scholar
  5. Chen, J., Sitter, R.R.: A pseudo empirical likelihood approach to the effective use of auxiliary information in complex surveys. Stat. Sin. 9, 385–406 (1999)zbMATHMathSciNetGoogle Scholar
  6. Chen, J., Chen, S.R., Rao, J.N.K.: Empirical likelihood confidence intervals for the mean of a population containing many zero values. Can. J. Stat. 31, 53–68 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  7. Deville, J.C.: Variance estimation for complex statistics and estimators: Linearization and residual techniques. Surv. Methodol. 25, 193–203 (1999)Google Scholar
  8. Deville, J.C., Särndal, C.E.: Calibration estimators in survey sampling. J. Am. Stat. Assoc. 87, 376–382 (1992)CrossRefzbMATHGoogle Scholar
  9. Di Meglio, E., Osier, G., Goedemé, T., Berger, Y.G., Di Falco, E.: Standard Error Estimation in EU-SILC - First Results of the Net-SILC2 Project. Proceeding of the Conference on New Techniques and Technologies for Statistics, Brussels (2013). http://www.cros-portal.eu/sites/default/files/NTTS2013fullPaper_144.pdf
  10. Eurostat (2012) European union statistics on income and living conditions (EU-SILC). http://epp.eurostat.ec.europa.eu/portal/page/portal/microdata/eu_silc. Accessed 7 Jan 2013 [Online]
  11. Godambe, V.P.: An optimum property of regular maximum likelihood estimation. Ann. Math. Stat. 31, 1208–1211 (1960)CrossRefMathSciNetGoogle Scholar
  12. Hájek, J.: Asymptotic theory of rejective sampling with varying probabilities from a finite population. Ann. Math. Stat. 35, 1491–1523 (1964)CrossRefzbMATHGoogle Scholar
  13. Hájek, J.: Comment on a paper by D. Basu. in Foundations of Statistical Inference. Holt, Rinehart and Winston, Toronto (1971)Google Scholar
  14. Hansen, M., Hurwitz, W., Madow, W.: Sample Survey Methods and Theory, Vol. I. Wiley, New York (1953)zbMATHGoogle Scholar
  15. Hartley, H.O., Rao, J.N.K.: A new estimation theory for sample surveys, II. A Symposium on the Foundations of Survey Sampling Held at the University of North Carolina, Chapel Hill, North Carolina. Wiley-Interscience, New York (1969)Google Scholar
  16. Horvitz, D.G., Thompson, D.J.: A generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47, 663–685 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  17. Hudson, D.J.: Interval estimation from the likelihood function. J. R. Stat. Soc. 33, 256–262 (1971)zbMATHMathSciNetGoogle Scholar
  18. Isaki, C.T., Fuller, W.A.: Survey design under the regression super-population model. J. Am. Stat. Assoc. 77, 89–96 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  19. Krewski, D., Rao, J.N.K.: Inference from stratified sample: properties of linearization jackknife, and balanced repeated replication methods. Ann. Stat. 9, 1010–1019 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  20. Osier, G.: Variance estimation for complex indicators of poverty and inequality using linearization techniques. Surv. Res. Method 3, 167–195 (2009)Google Scholar
  21. Owen, A.B.: Empirical Likelihood. Chapman & Hall, New York (2001)CrossRefzbMATHGoogle Scholar
  22. Polyak, B.T.: Introduction to Optimization. Optimization Software, Inc., Publications Division, New York (1987)Google Scholar
  23. Rao, J.N.K., Wu, C.F.J.: Resampling inference with complex survey data. J. Am. Stat. Assoc. 83, 231–241 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  24. Rao, J.N.K., Wu, W.: Empirical likelihood methods. In: Pfeffermann, D., Rao, C.R. (eds.) Handbook of Statistics: Sample Surveys: Inference and Analysis, vol. 29B, pp. 189–207. North-Holland, The Netherlands (2009)CrossRefGoogle Scholar
  25. Rao, J.N.K., Wu, C.F.J., Yue, K.: Some recent work on resampling methods for complex surveys. Surv. Methodol. 18, 209–217 (1992)Google Scholar
  26. Särndal, C.-E., Swensson, B., Wretman, J.: Model Assisted Survey Sampling. Springer, New York (1992)CrossRefzbMATHGoogle Scholar
  27. Wilks, S.S.: Shortest average confidence intervals from large samples. Ann. Math. Stat. 9, 166–175 (1938)CrossRefGoogle Scholar
  28. Wu, C.: Algorithms and R codes for the pseudo empirical likelihood method in survey sampling. Surv. Methodol. 31, 239–243 (2005)Google Scholar
  29. Wu, C., Rao, J.N.K.: Pseudo-empirical likelihood ratio confidence intervals for complex surveys. Can. J. Stat. 34, 359–375 (2006)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of SouthamptonSouthamptonUK

Personalised recommendations