Optimal Regression Estimator for Stratified Two-Stage Sampling

  • Nuanpan Nangsue
  • Yves G. Berger
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


Regression estimators are often used in survey sampling for point estimation. We propose a new regression estimator based upon the optimal estimator proposed by Berger et al., (2003). The proposed estimator can be used for stratified two-stage sampling designs when the sampling fraction is negligible and the primary sampling units (PSU) are selected with unequal probabilities. For example, this is the case for self-weighted two-stage designs. We assume that we have auxiliary variables available for the secondary sampling units (SSU) and the primary sampling units (PSU). We propose to use an ultimate cluster approach to estimate the regression coefficient of the regression estimator. Estevao and Särndal (2006) proposed a regression estimator for two-stage sampling. This estimator will be compared with the proposed estimator through a simulation study. We will show that the proposed estimator is more accurate that the Estevao and Särndal (2006) estimator when the strata are homogeneous.


Design-based approach Horvitz–Thompson estimator Stratification Ultimate cluster approach Unequal inclusion probabilities 


  1. Berger, Y.: Variance estimation with chao’s sampling scheme. J. Stat. Plan. Inference 127, 253–277 (2005).
  2. Berger, Y.G., Tirari, M.E.H., Tillé, Y.: Towards optimal regression estimation in sample surveys. Aust. N. Z. J. Stat. 45, 319–329 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  3. Chambers, R.L., Dunstan, R.: Estimating distribution functions from survey data. Biometrika 73, 597–604 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  4. Deville, J.: Estimation de la variance du coefficient de gini mesuré par sondage. Actes des Journées de Méthodologie Statistiques INSEE méthodes [In French] (1997)Google Scholar
  5. Estevao, V.M., Särndal, C.-E.: Survey estimates by calibration on complex auxiliary information. Int. Stat. Rev. 74, 127–147 (2006).
  6. Hansen, M., Hurwitz, W., Madow, W.: Sample Survey Methods and Theory, Vol. I. Wiley, New York (1953)zbMATHGoogle Scholar
  7. Horvitz, D.G., Thompson, D.J.: A generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47, 663–685 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  8. Montanari, G.: Post sampling efficient qr-prediction in large sample survey. Int. Stat. Rev. 55, 191–202 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  9. Narain, R.: On sampling without replacement with varying probabilities. J. Ind. Soc. Agri. Statist. 3, 169–174 (1951)MathSciNetGoogle Scholar
  10. Tan, Z.: Simple design-efficient calibration estimators for rejective and high-entropy sampling. Biometrika 100, 399–415 (2013)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of SouthamptonSouthamptonUK

Personalised recommendations