Advertisement

Improved Davies-Murphy’s Attack on DES Revisited

  • Yi Lu
  • Yvo Desmedt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8352)

Abstract

DES is a famous 64-bit block cipher with balanced Feistel structure. It consists of 16 rounds. The key has 56 bits and the round key has 48 bits. Two major cryptanalysis techniques (namely, linear cryptanalysis and differential cryptanalysis) were notably developed and successfully applied to the full 16-round DES in the early 1990’s. Davies-Murphy’s attack can be seen as a special linear attack, which was developed before invention of linear cryptanalysis. It was improved by Biham and Biryukov and most recently by Jacques and Muller. In this paper, we revisit the recent improved Davies-Murphy’s attack by Jacques and Muller from an algorithmic point of view. Based on Matsui’s algorithm 2, we give an improved attack algorithm. Our improved attack algorithm works in time \((2^{41})\) with memory \((2^{33})\). In contrast, Jacques-Muller’s attack takes time \((2^{43})\) and memory \((2^{35})\). It seems that our results of the time and memory complexities are optimal, due to the use of Walsh transform. Meanwhile, we generalize and further improve the results of the improved Matsui’s algorithm 2 for the case that the subkeys are XORed into the round function.

Keywords

DES Block cipher Davies-Murphy’s attack Linear cryptanalysis Matsui’s algorithm 2 Walsh transform 

References

  1. 1.
    Biham, E., Biryukov, A.: An improvement of Davies’ attack on DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 461–467. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer, Heidelberg (1993)Google Scholar
  3. 3.
    Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 77–88. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Courtois, N.T., Castagnos, G., Goubin, L.: What do DES S-boxes say to each other?, IACR eprint. http://eprint.iacr.org/2003/184 (2003)
  5. 5.
    Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption standard, IACR eprint. http://eprint.iacr.org/2006/402 (2006)
  6. 6.
    Davies, D., Murphy, S.: Pairs and triplets of DES S-Boxes. J. Cryptol. 8(1), 1–25 (1995)zbMATHGoogle Scholar
  7. 7.
    Etrog, J., Robshaw, M.J.B.: The cryptanalysis of reduced-round SMS4. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 51–65. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Harpes, C., Massey, J.L.: Partitioning cryptanalysis. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 13–27. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Kunz-Jacques, S., Muller, F.: New improvements of Davies-Murphy cryptanalysis. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 425–442. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Lu, Y., Desmedt, Y.: Bias analysis of a certain problem with applications to E0 and Shannon cipher. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 16–28. Springer, Heidelberg (2011)Google Scholar
  11. 11.
    Lu, Y., Wang, H., Ling, S.: Cryptanalysis of Rabbit. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 204–214. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  13. 13.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.National Engineering Research Center of Fundamental SoftwareInstitute of Software, Chinese Academy of SciencesBeijingChina
  2. 2.The University of Texas at DallasRichardsonUSA
  3. 3.University College LondonLondonUK

Personalised recommendations