Advertisement

Computational Soundness of Symbolic Blind Signatures under Active Attacker

  • Hideki Sakurada
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8352)

Abstract

Blind signature schemes enable users to obtain signatures on texts without revealing the texts to signers. They are often used to provide anonymity in protocols such as electronic cash and voting protocols. To confirm the security of such a voting scheme, Kremer and Ryan employ a symbolic model for protocols that use blind signatures. However, the soundness of this model with respect to the computational model in which security of blind signatures is defined is yet to be explored. In this paper, we discuss certain difficulties involved in establishing the computational soundness of their symbolic model, propose an alternative symbolic model, and show its computational soundness.

Keywords

Partial Function Blind Signature Symbolic Model Signing Algorithm Overwhelming Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational soundness of formal encryption). J. Cryptology 15(2), 103–127 (2002)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Backes, M., Hofheinz, D., Unruh, D.: CoSP: a general framework for computational soundness proofs. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM Conference on Computer and Communications Security. pp. 66–78. ACM (2009)Google Scholar
  3. 3.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of chaum’s blind signature scheme. J. Cryptology 16(3), 185–215 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO, pp. 199–203. Plenum Press, New York (1982)Google Scholar
  6. 6.
    Comon-Lundh, H., Cortier, V.: Computational soundness of observational equivalence. In: Proceedings of the 15th ACM Conference on Computer and Communications Security, CCS’08, pp. 109–118. ACM, New York (2008)CrossRefGoogle Scholar
  7. 7.
    Comon-Lundh, H., Hagiya, M., Kawamoto, Y., Sakurada, H.: Computational soundness of indistinguishability properties without computable parsing. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 63–79. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security protocols. In: Sagiv [18], pp. 157–171Google Scholar
  9. 9.
    Cortier, V., Warinschi, B.: A composable computational soundness notion. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM Conference on Computer and Communications Security. pp. 63–74. ACM (2011)Google Scholar
  10. 10.
    Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections. In: Seberry, J., Zheng, Y. (eds.) ASIACRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993)Google Scholar
  11. 11.
    Janvier, R., Lakhnech, Y., Mazaré, L.: Completing the picture: soundness of formal encryption in the presence of active adversaries. In: Sagiv [18], pp. 172–185Google Scholar
  12. 12.
    Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Kawamoto, Y., Sakurada, H., Hagiya, M.: Computationally sound symbolic anonymity of a ring signature. In: Proceedings of Joint Workshop on Foundations of Computer Security, Automated Reasoning for Security Protocol Analysis and Issues in the Theory of, Security (FCS-ARSPA-WITS’08), June 2008, pp. 161–175 (2008)Google Scholar
  14. 14.
    Kawamoto, Y., Sakurada, H., Hagiya, M.: Computationally sound formalization of rerandomizable RCCA secure encryption. In: Cortier, V., Kirchner, C., Okada, M., Sakurada, H. (eds.) Formal to practical security. LNCS, vol. 5458, pp. 158–180. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Kremer, S., Ryan, M.D.: Analysis of an electronic voting protocol in the applied pi-calculus. In: Sagiv [18], pp. 186–200Google Scholar
  16. 16.
    Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptology 13, 361–396 (2000)CrossRefzbMATHGoogle Scholar
  18. 18.
    Sagiv, S. (ed.): ESOP 2005. LNCS, vol. 3444. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  19. 19.
    Sakurada, H.: Computational soundness of symbolic blind signatures under active attacker (in preparation)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.NTT Communication Science LaboratoriesNTT CorporationKanagawaJapan

Personalised recommendations