Imputation of Quantitative Genetic Interactions in Epistatic MAPs by Interaction Propagation Matrix Completion

  • Marinka Žitnik
  • Blaž Zupan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8394)


A popular large-scale gene interaction discovery platform is the Epistatic Miniarray Profile (E-MAP). E-MAPs benefit from quantitative output, which makes it possible to detect subtle interactions. However, due to the limits of biotechnology, E-MAP studies fail to measure genetic interactions for up to 40% of gene pairs in an assay. Missing measurements can be recovered by computational techniques for data imputation, thus completing the interaction profiles and enabling downstream analysis algorithms that could otherwise be sensitive to largely incomplete data sets. We introduce a new interaction data imputation method called interaction propagation matrix completion (IP-MC). The core part of IP-MC is a low-rank (latent) probabilistic matrix completion approach that considers additional knowledge presented through a gene network. IP-MC assumes that interactions are transitive, such that latent gene interaction profiles depend on the profiles of their direct neighbors in a given gene network. As the IP-MC inference algorithm progresses, the latent interaction profiles propagate through the branches of the network. In a study with three different E-MAP data assays and the considered protein-protein interaction and Gene Ontology similarity networks, IP-MC significantly surpassed existing alternative techniques. Inclusion of information from gene networks also allows IP-MC to predict interactions for genes that were not included in original E-MAP assays, a task that could not be considered by current imputation approaches.


genetic interaction missing value imputation epistatic miniarray profile matrix completion interaction propagation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schuldiner, M., et al.: Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123(3), 507–519 (2005)CrossRefGoogle Scholar
  2. 2.
    Collins, S.R., et al.: A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biology 7, R63 (2006)Google Scholar
  3. 3.
    Roguev, A., et al.: Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322(5900), 405–410 (2008)CrossRefGoogle Scholar
  4. 4.
    Wilmes, G.M., et al.: A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Molecular Cell 32(5), 735–746 (2008)CrossRefGoogle Scholar
  5. 5.
    Tong, A.H.Y., et al.: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550), 2364–2368 (2001)CrossRefGoogle Scholar
  6. 6.
    Tong, A.H.Y., et al.: Global mapping of the yeast genetic interaction network. Science 303(5659), 808–813 (2004)CrossRefGoogle Scholar
  7. 7.
    Collins, S.R., et al.: Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137), 806–810 (2007)CrossRefGoogle Scholar
  8. 8.
    de Brevern, A.G., et al.: Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering. BMC Bioinformatics 5(1), 114 (2004)CrossRefGoogle Scholar
  9. 9.
    Liew, A.W.C., et al.: Missing value imputation for gene expression data: computational techniques to recover missing data from available information. Briefings in Bioinformatics 12(5), 498–513 (2011)CrossRefGoogle Scholar
  10. 10.
    Pu, S., et al.: Local coherence in genetic interaction patterns reveals prevalent functional versatility. Bioinformatics 24(20), 2376–2383 (2008)CrossRefGoogle Scholar
  11. 11.
    Bandyopadhyay, S., et al.: Functional maps of protein complexes from quantitative genetic interaction data. PLoS Computational Biology 4(4), e1000065 (2008)Google Scholar
  12. 12.
    Ulitsky, I., et al.: From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions. Molecular Systems Biology 4(1) (2008)Google Scholar
  13. 13.
    Järvinen, A.P., et al.: Predicting quantitative genetic interactions by means of sequential matrix approximation. PLoS One 3(9), e3284 (2008)Google Scholar
  14. 14.
    Troyanskaya, O., et al.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001)CrossRefGoogle Scholar
  15. 15.
    Brock, G.N., et al.: Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes. BMC Bioinformatics 9(1), 12 (2008)CrossRefGoogle Scholar
  16. 16.
    Ryan, C., et al.: Missing value imputation for epistatic MAPs. BMC Bioinformatics 11(1), 197 (2010)CrossRefGoogle Scholar
  17. 17.
    Zheng, J., et al.: Epistatic relationships reveal the functional organization of yeast transcription factors. Molecular Systems Biology 6(1) (2010)Google Scholar
  18. 18.
    Bø, T.H., et al.: LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Research 32(3), e34 (2004)Google Scholar
  19. 19.
    Kim, H., et al.: Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 21(2), 187–198 (2005)CrossRefGoogle Scholar
  20. 20.
    Cai, J.F., et al.: A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization 20(4), 1956–1982 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Oba, S., et al.: A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19(16), 2088–2096 (2003)CrossRefGoogle Scholar
  22. 22.
    Jörnsten, R., et al.: DNA microarray data imputation and significance analysis of differential expression. Bioinformatics 21(22), 4155–4161 (2005)CrossRefGoogle Scholar
  23. 23.
    Ulitsky, I., et al.: Towards accurate imputation of quantitative genetic interactions. Genome Biology 10(12), R140 (2009)Google Scholar
  24. 24.
    Ryan, C., et al.: Imputing and predicting quantitative genetic interactions in epistatic MAPs. In: Network Biology, pp. 353–361 (2011)Google Scholar
  25. 25.
    Pan, X.Y., Tian, Y., Huang, Y., Shen, H.B.: Towards better accuracy for missing value estimation of epistatic miniarray profiling data by a novel ensemble approach. Genomics 97(5), 257–264 (2011)CrossRefGoogle Scholar
  26. 26.
    Wong, S.L., et al.: Combining biological networks to predict genetic interactions. PNAS 101(44), 15682–15687 (2004)CrossRefGoogle Scholar
  27. 27.
    Kelley, R., Ideker, T.: Systematic interpretation of genetic interactions using protein networks. Nature Biotechnology 23(5), 561–566 (2005)CrossRefGoogle Scholar
  28. 28.
    Qi, Y., et al.: Finding friends and enemies in an enemies-only network: a graph diffusion kernel for predicting novel genetic interactions and co-complex membership from yeast genetic interactions. Genome Research 18(12), 1991–2004 (2008)CrossRefGoogle Scholar
  29. 29.
    Pandey, G., et al.: An integrative multi-network and multi-classifier approach to predict genetic interactions. PLoS Computational Biology 6(9), e1000928 (2010)Google Scholar
  30. 30.
    Ashburner, M., et al.: Gene Ontology: tool for the unification of biology. Nature Genetics 25(1), 25–29 (2000)CrossRefGoogle Scholar
  31. 31.
    Stark, C., et al.: BioGRID: a general repository for interaction datasets. Nucleic Acids Research 34(suppl. 1), D535–D539 (2006)Google Scholar
  32. 32.
    Costanzo, M., et al.: The genetic landscape of a cell. Science 327(5964), 425–431 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marinka Žitnik
    • 1
  • Blaž Zupan
    • 1
    • 2
  1. 1.Faculty of Computer and Information ScienceUniversity of LjubljanaSlovenia
  2. 2.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA

Personalised recommendations