Tractatus: An Exact and Subquadratic Algorithm for Inferring Identical-by-Descent Multi-shared Haplotype Tracts

  • Derek Aguiar
  • Eric Morrow
  • Sorin Istrail
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8394)


In this work we present graph theoretic algorithms for the identification of all identical-by-descent (IBD) multi-shared haplotype tracts for an m ×n haplotype matrix. We introduce Tractatus, an exact algorithm for computing all IBD haplotype tracts in time linear in the size of the input, O(mn). Tractatus resolves a long standing open problem, breaking optimally the (worst-case) quadratic time barrier of O(m 2 n) of previous methods often cited as a bottleneck in haplotype analysis of genome-wide association study-sized data. This advance in algorithm efficiency makes an impact in a number of areas of population genomics rooted in the seminal Li-Stephens framework for modeling multi-loci linkage disequilibrium (LD) patterns with applications to the estimation of recombination rates, imputation, haplotype-based LD mapping, and haplotype phasing. We extend the Tractatus algorithm to include computation of haplotype tracts with allele mismatches and shared homozygous haplotypes in a set of genotypes. Lastly, we present a comparison of algorithmic runtime, power to infer IBD tracts, and false positive rates for simulated data and computations of homozygous haplotypes in genome-wide association study data of autism. The Tractatus algorithm is available for download at .


haplotypes haplotype tracts graph theory identity-by- descent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, N., Stephens, M.: Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165(4), 2213–2233 (2003)Google Scholar
  2. 2.
    Stephens, M., Smith, N.J., Donnelly, P.: A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68(4), 978–989 (2001)CrossRefGoogle Scholar
  3. 3.
    Hudson, R.R.: Gene genealogies and the coalescent process. Oxford Survey in Evolutionary Biology 7, 1–44 (1991)Google Scholar
  4. 4.
    Fearnhead, P., Donnelly, P.: Estimating recombination rates from population genetic data. Genetics 159(3), 1299–1318 (2001)Google Scholar
  5. 5.
    Kingman, J.F.C.: On the Genealogy of Large Populations. Journal of Applied Probability 19, 27–43 (1982)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Browning, S.R., Browning, B.L.: Identity by descent between distant relatives: Detection and applications. Annual Review of Genetics 46(1), 617–633 (2012)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Howie, B.N., Donnelly, P., Marchini, J.: A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5(6), e1000529 (2009)Google Scholar
  8. 8.
    Li, Y., Willer, C.J., Ding, J., Scheet, P., Abecasis, G.R.: Mach: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genetic Epidemiology 34(8), 816–834 (2010)CrossRefGoogle Scholar
  9. 9.
    Delaneau, O., Marchini, J., Zagury, J.F.: A linear complexity phasing method for thousands of genomes. Nat. Meth. 9(2), 179–181 (2011)CrossRefGoogle Scholar
  10. 10.
    Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., Sham, P.C.: PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81(3), 559–575 (2007)CrossRefGoogle Scholar
  11. 11.
    Browning, B.L., Browning, S.R.: A fast, powerful method for detecting identity by descent. American Journal of Human Genetics 88(2), 173–182 (2011)CrossRefGoogle Scholar
  12. 12.
    Gusev, A., Kenny, E.E., Lowe, J.K., Salit, J., Saxena, R., Kathiresan, S., Altshuler, D.M., Friedman, J.M., Breslow, J.L., Pe’er, I.: DASH: A Method for Identical-by-Descent Haplotype Mapping Uncovers Association with Recent Variation. Am. J. Hum. Genet. 88(6), 706–717 (2011)CrossRefGoogle Scholar
  13. 13.
    He, D.: IBD-Groupon: an efficient method for detecting group-wise identity-by-descent regions simultaneously in multiple individuals based on pairwise IBD relationships. Bioinformatics 29(13), 162–170 (2013)CrossRefGoogle Scholar
  14. 14.
    Gusev, A., Lowe, J.K., Stoffel, M., Daly, M.J., Altshuler, D., Breslow, J.L., Friedman, J.M., Pe’er, I.: Whole population, genome-wide mapping of hidden relatedness. Genome Research 19(2), 318–326 (2009)CrossRefGoogle Scholar
  15. 15.
    McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM 23(2), 262–272 (1976)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Farach, M.: Optimal suffix tree construction with large alphabets. In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, pp. 137–143. IEEE Computer Society, Washington, DC (1997)Google Scholar
  18. 18.
    Kong, A., Masson, G., Frigge, M.L., Gylfason, A., Zusmanovich, P., Thorleifsson, G., Olason, P.I., Ingason, A., Steinberg, S., Rafnar, T., et al.: Detection of sharing by descent, long-range phasing and haplotype imputation. Nature Genetics 40(9), 1068–1075 (2008)CrossRefGoogle Scholar
  19. 19.
    Halldorsson, B.V., Aguiar, D., Tarpine, R., Istrail, S.: The Clark Phaseable sample size problem: long-range phasing and loss of heterozygosity in GWAS. Journal of Computational Biology 18(3), 323–333 (2011)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Miyazawa, H., Kato, M., Awata, T., Kohda, M., Iwasa, H., Koyama, N., Tanaka, T., Huqu, N., Kyo, S., Okazaki, Y.: Homozygosity Haplotype Allows a Genomewide Search for the Autosomal Segments Shared among Patients. The American Journal of Human Genetics 80(6), 1090–1102 (2007)CrossRefGoogle Scholar
  21. 21.
    Fischbach, G.D., Lord, C.: The Simons Simplex Collection: A Resource for Identification of Autism Genetic Risk Factors. Neuron 68(2), 192–195 (2010)CrossRefGoogle Scholar
  22. 22.
    International HapMap Consortium: The International HapMap Project. Nature 426(6968), 789–796 (December 2003)Google Scholar
  23. 23.
    Gamsiz, E., Viscidi, E., Frederick, A., Nagpal, S., Sanders, S., Murtha, M., Schmidt, M., Triche, E., Geschwind, D., State, M., Istrail, S., Cook Jr., E., Devlin, B., Morrow, E.: Intellectual disability is associated with increased runs of homozygosity in simplex autism. The American Journal of Human Genetics 93(1), 103–109 (2013)CrossRefGoogle Scholar
  24. 24.
    Aguiar, D., Istrail, S.: Hapcompass: A fast cycle basis algorithm for accurate haplotype assembly of sequence data. Journal of Computational Biology (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Derek Aguiar
    • 1
  • Eric Morrow
    • 2
  • Sorin Istrail
    • 1
  1. 1.Department of Computer Science and Center for Computational BiologyBrown UniversityProvidenceUSA
  2. 2.Departments of Molecular Biology, Cell Biology & Biochemistry and Psychiatry & Human BehaviorBrown UniversityProvidenceUSA

Personalised recommendations