Introduction to Stochastic Geometry

Chapter
Part of the Bocconi & Springer Series book series (BS, volume 7)

Abstract

This chapter introduces some of the fundamental notions from stochastic geometry. Background information from convex geometry is provided as far as this is required for the applications to stochastic geometry.

First, the necessary definitions and concepts related to geometric point processes and from convex geometry are provided. These include Grassmann spaces and invariant measures, Hausdorff distance, parallel sets and intrinsic volumes, mixed volumes, area measures, geometric inequalities and their stability improvements. All these notions and related results will be used repeatedly in the present and in the subsequent chapters of the book.

Second, a variety of important models and problems from stochastic geometry will be reviewed. Among these are the Boolean model, random geometric graphs, intersection processes of (Poisson) processes of affine subspaces, random mosaics, and random polytopes. We state the most natural problems and point out important new results and directions of current research.

References

  1. 1.
    Alishahi, K., Sharifitabar, M.: Volume degeneracy of the typical cell and the chord length distribution for Poisson–Voronoi tessellations in high dimensions. Adv. Appl. Probab. 40, 919–938 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bárány, I.: Random polytopes in smooth convex bodies. Mathematika 39, 81–92 (1992)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bárány, I., Buchta, C.: Random polytopes in a convex polytope, independence of shape, and concentration of vertices. Math. Ann. 297, 467–497 (1993)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bárány, I., Reitzner, M.: Poisson polytopes. Ann. Probab. 38, 1507–1531 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bárány, I., Reitzner, M.: On the variance of random polytopes. Adv. Math. 225, 1986–2001 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bárány, I., Fodor, F., Vígh, V.: Intrinsic volumes of inscribed random polytopes in smooth convex bodies. Adv. Appl. Probab. 42, 605–619 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Baumstark, V., Last, G.: Some distributional results for Poisson–Voronoi tessellations. Adv. Appl. Probab. 39, 16–40 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Baumstark, V., Last, G.: Gamma distributions for stationary Poisson flat processes. Adv. Appl. Probab. 41, 911–939 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Beermann, M., Reitzner, M.: Beyond the Efron-Buchta identities: distributional results for Poisson polytopes. Discrete Comput. Geom. 53, 226–244 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Beermann, M., Redenbach, C., Thäle, C.: Asymptotic shape of small cells. Math. Nachr. 287, 737–747 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Blaschke, W.: Über affine Geometrie XI: Lösung des “Vierpunktproblems” von Sylvester aus der Theorie der geometrischen Wahrscheinlichkeiten. Ber. Verh. Sächs. Ges. Wiss. Leipzig Math.-Phys. Kl. 69, 436–453 (1917); reprinted in: Burau, W., et al. (eds.) Wilhelm Blaschke. Gesammelte Werke. Konvexgeometrie, vol. 3, pp. 284–301. Essen, Thales (1985)Google Scholar
  12. 12.
    Bollobás, B., Riordan, O.: The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theory Relat. Fields 136, 417–468 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, New York (2006)CrossRefMATHGoogle Scholar
  14. 14.
    Böröczky, K., Hug, D.: Stability of the reverse Blaschke–Santaló inequality for zonoids and applications. Adv. Appl. Math. 44, 309–328 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    Böröczky, K., Hoffmann, L.M., Hug, D.: Expectation of intrinsic volumes of random polytopes. Period. Math. Hung. 57, 143–164 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bourguin, S., Peccati, G.: Portmanteau inequalities on the Poisson space: mixed regimes and multidimensional clustering. Electron. J. Probab. 19, 42 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bourguin, S., Peccati, G.: The Malliavin-Stein method on the Poisson space. In: Peccati, G., Reitzner, M. (eds.) Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Ito Chaos Expansions and Stochastic Geometry. Bocconi & Springer Series, vol. 7, pp. 185–228. Springer, Cham (2016)Google Scholar
  18. 18.
    Buchta, C.: Stochastische Approximation Konvexer Polygone. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 67, 283–304 (1984)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Cabo, A.J., Groeneboom, P.: Limit theorems for functionals of convex hulls. Probab. Theory Relat. Fields 100, 31–55 (1994)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Calka, P.: The distributions of the smallest disks containing the Poisson Voronoi typical cell and the Crofton cell in the plane. Adv. Appl. Probab. 34, 702–717 (2002)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Calka, P.: Tessellations. In: Kendall, W.S., Molchanov, I. (eds.) New Perspectives in Stochastic Geometry, pp. 145–169. Oxford University Press, London (2010)Google Scholar
  22. 22.
    Calka, P., Chenavier, N.: Extreme values for characteristic radii of a Poisson–Voronoi tessellation. Extremes 17, 359–385 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Calka, P., Schreiber, T.: Limit theorems for the typical Poisson–Voronoi cell and the Crofton cell with a large inradius. Ann. Probab. 33, 1625–1642 (2005)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Calka, P., Schreiber, T.: Large deviation probabilities for the number of vertices of random polytopes in the ball. Adv. Appl. Probab. 38, 47–58 (2006)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Calka, P., Yukich, J.E.: Variance asymptotics for random polytopes in smooth convex bodies. Probab. Theory Relat. Fields 158, 435–463 (2014)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Calka, P., Schreiber, T., Yukich, J.E.: Brownian limits, local limits and variance asymptotics for convex hulls in the ball. Ann. Probab. 41, 50–108 (2013)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Chenavier, N.: A general study of extremes of stationary tessellations with applications. Stoch. Process. Appl. 124, 2917–2953 (2014)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Dalla, L., Larman, D.G.: Volumes of a random polytope in a convex set. In: Gritzmann, P., Sturmfels, B. (eds.) Applied Geometry and Discrete Mathematics. The Victor Klee Festschrift. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 175–180. American Mathematical Society, Providence (1991)Google Scholar
  29. 29.
    Decreusefond, L., Ferraz, E., Randriam, H., Vergne, A.: Simplicial homology of random configurations. Adv. Appl. Probab. 46, 1–20 (2014)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Devillers, O., Glisse, M., Goaoc, X., Moroz, G., Reitzner, M.: The monotonicity of f-vectors of random polytopes. Electron. Commun. Probab. 18, 1–8 (2013)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Efron, B.: The convex hull of a random set of points. Biometrika 52, 331–343 (1965)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Einmahl, J.H.J., Khmaladze, E.V.: The two-sample problem in \(\mathbb{R}^{m}\) and measure-valued martingales. In: State of the Art in Probability and Statistics (Leiden, 1999). IMS Lecture Notes Monograph Series, vol. 36, pp. 434–463. Institute of Mathematical Statistics, Beachwood (2001)Google Scholar
  33. 33.
    Giannopoulos, A.: On the mean value of the area of a random polygon in a plane convex body. Mathematika 39, 279–290 (1992)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Goldmann, A.: Sur une conjecture de D.G. Kendall concernant la cellule do Crofton du plan et sur sa contrepartie brownienne. Ann. Probab. 26, 1727–1750 (1998)Google Scholar
  35. 35.
    Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics, vol. 1730. Springer, Berlin (2000)Google Scholar
  36. 36.
    Groemer, H.: On some mean values associated with a randomly selected simplex in a convex set. Pac. J. Math. 45, 525–533 (1973)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Groemer, H.: On the mean value of the volume of a random polytope in a convex set. Arch. Math. 25, 86–90 (1974)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Groemer, H.: On the extension of additive functionals on classes of convex sets. Pac. J. Math. 75, 397–410 (1978)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Groeneboom, P.: Limit theorems for convex hulls. Probab. Theory Relat. Fields 79, 327–368 (1988)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Haenggi, M.: Stochastic Geometry for Wireless Networks. Cambridge University Press, Cambridge (2013)MATHGoogle Scholar
  41. 41.
    Heinrich, L.: Large deviations of the empirical volume fraction for stationary Poisson grain models. Ann. Appl. Probab. 15, 392–420 (2005)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Heinrich, L., Molchanov, I.S.: Central limit theorems for a class of random measures associated with germ-grain models. Adv. Appl. Probab. 31, 283–314 (1999)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Heinrich, L., Schmidt, H., Schmidt, V.: Limit theorems for stationary tessellations with random inner cell structure. Adv. Appl. Probab. 37, 25–47 (2005)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Heveling, M., Reitzner, M.: Poisson–Voronoi Approximation. Ann. Appl. Probab. 19, 719–736 (2009)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Hörrmann, J., Hug, D.: On the volume of the zero cell of a class of isotropic Poisson hyperplane tessellations. Adv. Appl. Probab. 46, 622–642 (2014)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Hörrmann, J., Hug, D., Reitzner, M., Thähle, C.: Poisson polyhedra in high dimensions. Adv. Math. 281, 1–39 (2015)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Hsing, T.: On the asymptotic distribution of the area outside a random convex hull in a disk. Ann. Appl. Probab. 4, 478–493 (1994)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Hug, D.: Random mosaics. In: Baddeley, A., Bárány, I., Schneider, R., Weil, W. (eds.) Stochastic Geometry. Edited by W. Weil: Lecture Notes in Mathematics, vol. 1892, pp. 247–266. Springer, Berlin (2007)CrossRefGoogle Scholar
  49. 49.
    Hug, D.: Random polytopes. In: Spodarev, E. (ed.) Stochastic Geometry, Spatial Statistics and Random Fields. Lecture Notes in Mathematics, vol. 2068, pp. 205–238. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  50. 50.
    Hug, D., Schneider, R.: Large typical cells in Poisson–Delaunay mosaics. Rev. Roum. Math. Pures Appl. 50, 657–670 (2005)MathSciNetMATHGoogle Scholar
  51. 51.
    Hug, D., Schneider, R.: Asymptotic shapes of large cells in random tessellations. Geom. Funct. Anal. 17, 156–191 (2007)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Hug, D., Schneider, R.: Typical cells in Poisson hyperplane tessellations. Discrete Comput. Geom. 38, 305–319 (2007)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Hug, D., Schneider, R.: Large faces in Poisson hyperplane mosaics. Ann. Probab. 38, 1320–1344 (2010)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Hug, D., Schneider, R.: Faces with given directions in anisotropic Poisson hyperplane mosaics. Adv. Appl. Probab. 43, 308–321 (2011)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Hug, D., Schneider, R.: Approximation properties of random polytopes associated with Poisson hyperplane processes. Adv. Appl. Probab. 46, 919–936 (2014)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Hug, D., Reitzner, M., Schneider, R.: The limit shape of the zero cell in a stationary Poisson hyperplane tessellation. Ann. Probab. 32, 1140–1167 (2004)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Hug, D., Reitzner, M., Schneider, R.: Large Poisson–Voronoi cells and Crofton cells. Adv. Appl. Probab. 36, 667–690 (2004)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Hug, D., Last, G., Schulte, M.: Second order properties and central limit theorems for geometric functionals of Boolean models. Ann. Appl. Probab. 26, 73–135 (2016)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Hug, D., Thäle, C., Weil, W.: Intersection and proximity of processes of flats. J. Math. Anal. Appl. 426, 1–42 (2015)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Kahle, M.: Random geometric complexes. Discrete Comput. Geom. 45, 553–573 (2011)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Kahle, M.: Topology of random simplicial complexes: a survey. Algebraic Topology: Applications and New Directions. Contemporary Mathematics, vol. 620, pp. 201–221. American Mathematical Society, Providence (2014)Google Scholar
  62. 62.
    Kahle, M., Meckes, E.: Limit theorems for Betti numbers of random simplicial complexes. Homol. Homot. Appl. 15, 343–374 (2013)MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Khmaladze, E., Toronjadze, N.: On the almost sure coverage property of Voronoi tessellation: the \(\mathbb{R}^{1}\) case. Adv. Appl. Probab. 33, 756–764 (2001)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Kovalenko, I.N.: A proof of a conjecture of David Kendall on the shape of random polygons of large area. (Russian) Kibernet. Sistem. Anal. 187, 3–10. Engl. transl. Cybernet. Syst. Anal. 33, 461–467 (1997)Google Scholar
  65. 65.
    Kovalenko, I.N.: A simplified proof of a conjecture of D.G. Kendall concerning shapes of random polygons. J. Appl. Math. Stoch. Anal. 12, 301–310 (1999)Google Scholar
  66. 66.
    Lachièze-Rey, R., Peccati, G.: Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs. Electron. J. Probab. 18 (Article 32), 1–32 (2013)Google Scholar
  67. 67.
    Lachièze-Rey, R., Peccati, G.: Fine Gaussian fluctuations on the Poisson space, II: rescaled kernels, marked processes and geometric U-statistics. Stoch. Process. Appl. 123, 4186–4218 (2013)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Lachièze-Rey, R., Peccati, G.: New Kolmogorov bounds for functionals of binomial point processes. arXiv:1505.04640 (2015)Google Scholar
  69. 69.
    Lachièze-Rey, R., Reitzner, M.: U-statistics in stochastic geometry. In: Peccati, G., Reitzner, M. (eds.) Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Ito Chaos Expansions and Stochastic Geometry. Bocconi & Springer Series, vol. 7, pp. 229–253. Springer, Cham (2016)Google Scholar
  70. 70.
    Lachièze-Rey, R., Vega, S.: Boundary density and Voronoi set estimation for irregular sets. arXiv:1501.04724 (2015)Google Scholar
  71. 71.
    Last, G.: Stochastic analysis for Poisson processes. In: Peccati, G., Reitzner, M. (eds.) Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Ito Chaos Expansions and Stochastic Geometry. Bocconi and Springer Series, vol. 6, pp. 1–36. Springer/Bocconi University Press, Milan (2016)Google Scholar
  72. 72.
    Last, G., Ochsenreither, E.: Percolation on stationary tessellations: models, mean values and second order structure. J. Appl. Probab. 51A, 311–332 (2014). An earlier and more comprehensive version is available via arXiv:1312.6366Google Scholar
  73. 73.
    Last, G., Penrose, M.: Fock space representation, chaos expansion and covariance inequalities for general Poisson processes. Probab. Theory Relat. Fields 150, 663–690 (2011)MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Last, G., Penrose, M., Schulte, M., Thäle, C.: Central limit theorems for some multivariate Poisson functionals. Adv. Appl. Probab. 46, 348–364 (2014)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Miles, R.E.: A heuristic proof of a conjecture of D.G. Kendall concerning shapes of random polygons. J. Appl. Math. Stoch. Anal. 12, 301–310 (1995)Google Scholar
  76. 76.
    Milman, V.D., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. In: Geometric Aspects of Functional Analysis (1987–1988). Lecture Notes in Mathematics, vol. 1376, pp. 64–104. Springer, Berlin (1989)Google Scholar
  77. 77.
    Neher, R.A., Mecke, K., Wagner, H.: Topological estimation of percolation thresholds. J. Stat. Mech. Theory Exp. P01011 (2008)Google Scholar
  78. 78.
    Ochsenreither, E.: Geometrische Kenngrößen und zentrale Grenzwertsätze stetiger Perkolationsmodelle. Ph.D. thesis, Karlsruhe (2014)Google Scholar
  79. 79.
    Pardon, J.: Central limit theorems for random polygons in an arbitrary convex set. Ann. Probab. 39, 881–903 (2001)MathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    Pardon, J.: Central limit theorems for uniform model random polygons. J. Theor. Probab. 25, 823–833 (2012)MathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    Peccati, G., Zheng, C.: Multi-dimensional Gaussian fluctuations on the Poisson space. Electron. J. Probab. 15, 1487–1527 (2010)MathSciNetCrossRefMATHGoogle Scholar
  82. 82.
    Peccati, G., Solé, J.L., Taqqu, M.S., Utzet, F.: Stein’s method and normal approximation of Poisson functionals. Ann. Prob. 38, 443–478 (2010)CrossRefMATHGoogle Scholar
  83. 83.
    Penrose, M.D.: Random Geometric Graphs. Oxford University Press, Oxford (2003)CrossRefMATHGoogle Scholar
  84. 84.
    Penrose, M.D.: Laws of large numbers in stochastic geometry with statistical applications. Bernoulli 13, 1124–1150 (2007)MathSciNetCrossRefMATHGoogle Scholar
  85. 85.
    Rademacher, L.: On the monotonicity of the expected volume of a random simplex. Mathematika 58, 77–91 (2013)MathSciNetCrossRefMATHGoogle Scholar
  86. 86.
    Reitzner, M.: Random polytopes and the Efron–Stein jackknife inequality. Ann. Probab. 31, 2136–2166 (2003)MathSciNetCrossRefMATHGoogle Scholar
  87. 87.
    Reitzner, M.: Stochastical approximation of smooth convex bodies. Mathematika 51, 11–29 (2004)MathSciNetCrossRefMATHGoogle Scholar
  88. 88.
    Reitzner, M.: Central limit theorems for random polytopes. Probab. Theory Relat. Fields 133, 483–507 (2005)MathSciNetCrossRefMATHGoogle Scholar
  89. 89.
    Reitzner, M.: The combinatorial structure of random polytopes. Adv. Math. 191, 178–208 (2005)MathSciNetCrossRefMATHGoogle Scholar
  90. 90.
    Reitzner, M.: Random polytopes. In: Kendall W.S., Molchanov, I. (eds.) New Perspectives in Stochastic Geometry, pp. 45–76. Oxford University Press, Oxford (2010)Google Scholar
  91. 91.
    Reitzner, M., Schulte, M.: Central limit theorems for U-statistics of Poisson point processes. Ann. Prob. 41 (6), 3879–3909 (2013)MathSciNetCrossRefMATHGoogle Scholar
  92. 92.
    Reitzner, M., Spodarev, E., Zaporozhets, D.: Set reconstruction by Voronoi cells. Adv. Appl. Probab. 44, 938–953 (2012)MathSciNetCrossRefMATHGoogle Scholar
  93. 93.
    Reitzner, M., Schulte, M., Thäle, C.: Limit theory for the Gilbert graph. arXiv:1312.4861 (2014)Google Scholar
  94. 94.
    Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 2, 75–84 (1963)CrossRefMATHGoogle Scholar
  95. 95.
    Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten II. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 3, 138–147 (1964)CrossRefMATHGoogle Scholar
  96. 96.
    Schneider, R.: Approximation of convex bodies by random polytopes. Aequationes Math. 32, 304–310 (1987)MathSciNetCrossRefMATHGoogle Scholar
  97. 97.
    Schneider, R.: A duality for Poisson flats. Adv. Appl. Probab. 31, 63–68 (1999)MathSciNetCrossRefMATHGoogle Scholar
  98. 98.
    Schneider, R.: Weighted faces of Poisson hyperplane tessellations. Adv. Appl. Probab. 41, 682–694 (2009)MathSciNetCrossRefMATHGoogle Scholar
  99. 99.
    Schneider, R.: Vertex numbers of weighted faces in Poisson hyperplane mosaics. Discrete Comput. Geom. 44, 599–907 (2010)MathSciNetCrossRefMATHGoogle Scholar
  100. 100.
    Schneider, R.: Extremal properties of random mosaics. In: Bárány, I., Böröczky, K.J., Fejes Tóth, G., Pach, J. (eds.) Geometry: Intuitive, Discrete, and Convex. A Tribute to László Fejes Tóth. Bolyai Society Mathematical Studies, vol. 24, pp. 301–330. Springer, Berlin (2013)Google Scholar
  101. 101.
    Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, 2nd expanded edn. Cambridge University Press, New York (2014)Google Scholar
  102. 102.
    Schneider, R.: Second moments related to Poisson hyperplane tessellations. Manuscript (2015)Google Scholar
  103. 103.
    Schneider, R.: Discrete aspects of stochastic geometry. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. CRC Press Series on Discrete Mathematics and its Applications, pp. 167–184. CRC, Boca Raton (2015)Google Scholar
  104. 104.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and its Applications (New York). Springer, Berlin (2008)Google Scholar
  105. 105.
    Schneider, R., Weil, W.: Classical stochastic geometry. In: Kendall, W.S., Molchanov, I. (eds.) New Perspectives in Stochastic Geometry, pp. 1–42. Oxford University Press, Oxford (2010)Google Scholar
  106. 106.
    Schneider, R., Wieacker, J.A.: Random polytopes in a convex body. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 52, 69–73 (1980)MathSciNetCrossRefMATHGoogle Scholar
  107. 107.
    Schulte, M.: A central limit theorem for the Poisson-Voronoi approximation. Adv. Appl. Math. 49, 285–306 (2012)MathSciNetCrossRefMATHGoogle Scholar
  108. 108.
    Schulte, M., Thäle, C.: The scaling limit of Poisson-driven order statistics with applications in geometric probability. Stoch. Process. Appl. 122, 4096–4120 (2012)MathSciNetCrossRefMATHGoogle Scholar
  109. 109.
    Schulte, M., Thäle, C.: Distances between Poisson k-flats. Methodol. Comput. Appl. Probab. 16, 311–329 (2013)MathSciNetCrossRefMATHGoogle Scholar
  110. 110.
    Schütt, C.: Random polytopes and affine surface area. Math. Nachr. 170, 227–249 (1994)MathSciNetCrossRefMATHGoogle Scholar
  111. 111.
    Thäle, C., Yukich, J.E.: Asymptotic theory for statistics of the Poisson–Voronoi approximation. Bernoulli. J. Math. Anal. Appl. 434, 1365–1375 (2016)CrossRefGoogle Scholar
  112. 112.
    Vu, V.H.: Sharp concentration of random polytopes. Geom. Funct. Anal. 15, 1284–1318 (2005)MathSciNetCrossRefMATHGoogle Scholar
  113. 113.
    Wieacker, J.A.: Einige Probleme der polyedrischen Approximation. Diplomarbeit, Freiburg im Breisgau (1978)Google Scholar
  114. 114.
    Yukich, J.E.: Surface order scaling in stochastic geometry. Ann. Appl. Probab. 25, 177–210 (2015)MathSciNetCrossRefMATHGoogle Scholar
  115. 115.
    Zuyev, S.: Stochastic geometry and telecommunications networks. In: Kendall, W.S., Molchanov, I. (eds.) New Perspectives in Stochastic Geometry, pp. 520–554, Oxford university Press, Oxford (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of MathematicsKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institut für MathematikUniversität OsnabrückOsnabrückGermany

Personalised recommendations