Mobile Phone Camera-Based Video Scanning of Paper Documents

  • Muhammad Muzzamil LuqmanEmail author
  • Petra Gomez-Krämer
  • Jean-Marc Ogier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8357)


Mobile phone camera-based document video scanning is an interesting research problem which has entered into a new era with the emergence of widely used, processing capable and motion sensors equipped smartphones. We present our ongoing research on mobile phone camera-based document image mosaic reconstruction method for video scanning of paper documents. In this work, we have optimized the classic keypoint feature descriptor-based image registration method, by employing the accelerometer and gyroscope sensor data. Experimental results are evaluated using optical character recognition (OCR) on the reconstructed mosaic from mobile phone camera-based video scanning of paper documents.


Camera-based document image analysis Document image mosaicing Image registration 



The piXL project is supported by the “Fonds national pour la Société Numérique” of the French State by means of the “Programme d’Investissements d’Avenir”, and referenced under PIA-FSN2-PIXL. For more details and resources, visit


  1. 1.
    Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: International Conference on Computer Vision and Pattern Recognition, pp. 510–517 (2012)Google Scholar
  2. 2.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Hannuksela, J., Sangi, P., Heikkila, J., Liu, X., Doermann, D.: Document image mosaicing with mobile phones. In: International Conference on Image Analysis and Processing, pp. 575–582 (2007)Google Scholar
  5. 5.
    Jagannathan, L., Jawahar, C.: Perspective correction methods for camera based document analysis. In: International Workshop on Camera-Based Document Analysis and Recognition, pp. 148–154 (2005)Google Scholar
  6. 6.
    Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  7. 7.
    Liang, J., DeMenthon, D., Doermann, D.: Mosaicing of camera-captured document images. Comput. Vis. Image Underst. 113(4), 572–579 (2009)CrossRefGoogle Scholar
  8. 8.
    Liang, J., Doermann, D., Li, H.: Camera-based analysis of text and documents: a survey. Int. J. Doc. Anal. Recogn. 7(2–3), 84–104 (2005)CrossRefGoogle Scholar
  9. 9.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    Muja, M., Lowe, D.: Fast approximate nearest neighbors with automatic algorithm configuration. In: International Conference on Computer Vision Theory and Applications, pp. 331–340 (2009)Google Scholar
  11. 11.
    Nakai, T., Kise, K., Iwamura, M.: Camera-based document image mosaicing using LLAH. In: Document Recognition and Retrieval XVI, pp. 1–10 (2009)Google Scholar
  12. 12.
    Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: International Conference on Computer Vision, pp. 2564–2571 (2011)Google Scholar
  14. 14.
    Sawhney, H.S., Hsu, S., Kumar, R.: Robust video mosaicing through topology inference and local to global alignment. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, p. 103. Springer, Heidelberg (1998)Google Scholar
  15. 15.
    Szeliski, R.: Image alignment and stitching. In: Handbook of Mathematical Models in Computer Vision, pp. 273–292. Springer (2006)Google Scholar
  16. 16.
    Woodman, O.J.: An introduction to inertial navigation. Technical report 696, University of Cambridge, Computer Laboratory, Cambridge (2007)Google Scholar
  17. 17.
    Yang, Q., Wang, C., Gao, Y., Qu, H., Chang, E.: Inertial sensors aided image alignment and stitching for panorama on mobile phones. In: International Workshop on Mobile Location-Based Service, pp. 21–30 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Muhammad Muzzamil Luqman
    • 1
    Email author
  • Petra Gomez-Krämer
    • 1
  • Jean-Marc Ogier
    • 1
  1. 1.L3i LaboratoryUniversity of La RochelleLa RochelleFrance

Personalised recommendations