Advertisement

TRPs and Pain

  • Jane E. Sexton
  • Jeffrey Vernon
  • John N. Wood
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 223)

Abstract

Pain usually occurs as a result of tissue damage and has a role in healing and protection. However, in certain conditions it has no functional purpose and can become chronic and debilitating. A demand for more effective treatments to deal with this highly prevalent problem requires a better understanding of the underlying mechanisms. TRP channels are associated with numerous sensory functions across a wide range of species. Investigation into the expression patterns, electrophysiological properties and the effects of channel deletion in transgenic animal models have produced a great deal of evidence linking these channels to transduction of noxious stimuli as well as signalling within the pain system.

Keywords

TRP channels Pain Nociception Inflammation Neuropathy Analgesia 

Notes

Acknowledgments

We thank the Wellcome Trust and the Medical Research Council for generous support.

References

  1. Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD (2003) Hypotonicity induces TRPV4‐mediated nociception in rat. Neuron 39:497–511PubMedGoogle Scholar
  2. Alessandri-Haber N, Dina OA, Joseph EK, Reichling DB, Levine JD (2008) Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J Neurosci 28:1046–1057PubMedGoogle Scholar
  3. Alessandri-Haber N, Dina OA, Chen X, Levine JD (2009) TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29:6217–6228PubMedCentralPubMedGoogle Scholar
  4. Amadesi S, Cottrell GS, Divino L, Chapman K, Grady EF, Bautista F, Karanjia R, Barajas‐Lopez C, Vanner S, Vergnolle N, Bunnett NW (2006) Protease‐activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilonand A‐dependent mechanisms in rats and mice. J Physiol 575:555–571PubMedCentralPubMedGoogle Scholar
  5. Amaral MD, Pozzo-Miller L (2007) TRPC3 channels are necessary for brain‐derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 27:5179–5189PubMedCentralPubMedGoogle Scholar
  6. Amaya F, Oh‐hashi K, Naruse Y, Iijima N, Ueda M, Shimosato G, Tominaga M, Tanaka Y, Tanaka M (2003) Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons. Brain Res 963:190–196PubMedGoogle Scholar
  7. Babes A, Zorzon D, Reid G (2004) Two populations of cold‐sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. Eur J Neurosci 20:2276–2282PubMedGoogle Scholar
  8. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857PubMedGoogle Scholar
  9. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282PubMedGoogle Scholar
  10. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208PubMedGoogle Scholar
  11. Brierley SM, Castro J, Harrington AM, Hughes PA, Page AJ, Rychkov GY, Blackshaw LA (2011) TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. J Physiol 589:3575–3593PubMedCentralPubMedGoogle Scholar
  12. British Pain Society (2003) Pain in Europe Survey, Janet Fricker for Mundipharma International Ltd. http://www.britishpainsociety.org/Pain%20in%20Europ%20survey%20report.pdf
  13. Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain. Neuron 52:77–92PubMedCentralPubMedGoogle Scholar
  14. Caspani O, Zurborg S, Labuz D, Heppenstall PA (2009) The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain. PLoS One 4:e7383PubMedCentralPubMedGoogle Scholar
  15. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat‐activated ion channel in the pain pathway. Nature 389:816–824PubMedGoogle Scholar
  16. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin‐receptor homologue with a high threshold for noxious heat. Nature 398:436–441PubMedGoogle Scholar
  17. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–13PubMedGoogle Scholar
  18. Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R, O’Donnell D, Nicoll RA, Shah NM, Julius D, Basbaum AI (2011) Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J Neurosci 31:5067–5077PubMedCentralPubMedGoogle Scholar
  19. Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004) TRPV3 and TRPV4 mediate warmth‐evoked currents in primary mouse keratinocytes. J Biol Chem 279:21569–21575PubMedGoogle Scholar
  20. Chung MK, Güler AD, Caterina MJ (2005) Biphasic currents evoked by chemical or thermal activation of the heat‐gated ion channel, TRPV3. J Biol Chem 280:15928–15941PubMedGoogle Scholar
  21. Colburn RW, Lubin ML, Stone DJ, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386PubMedGoogle Scholar
  22. Craig AD (2003) Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 26:1–30PubMedGoogle Scholar
  23. Cui M, Honore P, Zhong C, Gauvin D, Mikusa J, Hernandez G, Chandran P, Gomtsyan A, Brown B, Bayburt EK, Marsh K, Bianchi B, McDonald H, Niforatos W, Neelands TR, Moreland RB, Decker MW, Lee CH, Sullivan JP, Faltynek CR (2006) TRPV1 receptors in the CNS play a key role in broad‐spectrum analgesia of TRPV1 antagonists. J Neurosci 26:9385–9393PubMedGoogle Scholar
  24. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor‐1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187PubMedGoogle Scholar
  25. del Camino D, Murphy S, Heiry M, Barrett LB, Earley TJ, Cook CA, Petrus MJ, Zhao M, D'Amours M, Deering N, Brenner GJ, Costigan M, Hayward NJ, Chong JA, Fanger CM, Woolf CJ, Patapoutian A, Moran MM (2010) TRPA1 contributes to cold hypersensitivity. J Neurosci 30:15165–15174PubMedCentralPubMedGoogle Scholar
  26. Derry S, Sven-Rice A, Cole P, Tan T, Moore RA (2013) Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst Rev 2, CD007393PubMedGoogle Scholar
  27. Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371–378PubMedGoogle Scholar
  28. Drew LJ, Rugiero F, Cesare P, Gale JE, Abrahamsen B, Bowden S, Heinzmann S, Robinson M, Brust A, Colless B, Lewis RJ, Wood JN (2007) High‐threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure‐evoked pain. PLoS One 2:e515PubMedCentralPubMedGoogle Scholar
  29. Eberhardt MJ, Filipovic MR, Leffler A, de la Roche J, Kistner K, Fischer MJ, Fleming T, Zimmermann K, Ivanovic-Burmazovic I, Nawroth PP, Bierhaus A, Reeh PW, Sauer SK (2012) Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J Biol Chem 287:28291–28306PubMedCentralPubMedGoogle Scholar
  30. Eid SR, Crown ED, Moore EL, Liang HA, Choong KC, Dima S, Henze DA, Kane SA, Urban MO (2008) HC‐030031, a TRPA1 selective antagonist, attenuates inflammatory‐ and neuropathy‐induced mechanical hypersensitivity. Mol Pain 4:48PubMedCentralPubMedGoogle Scholar
  31. Eijkelkamp N, Quick K, Wood JN (2013) Transient receptor potential channels and mechanosensation. AnnuRev Neurosci 36:519–546Google Scholar
  32. Elg S, Marmigere F, Mattsson JP, Ernfors P (2007) Cellular subtype distribution and developmental regulation of TRPC channel members in mouse dorsal root ganglion. J Comp Neurol 503(1):35–46PubMedGoogle Scholar
  33. Facer P, Casula MA, Smith GD, Benham CD, Chessell IP, Bountra C, Sinisi M, Birch R, Anand P (2007) Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol 7:11PubMedCentralPubMedGoogle Scholar
  34. Ferreira J, da Silva GL, Calixto JB (2004) Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice. Br J Pharmacol 141:787–794PubMedCentralPubMedGoogle Scholar
  35. Ferrini F, Salio C, Vergnano AM, Merighi A (2007) Vanilloid receptor‐1 (TRPV1)‐dependent activation of inhibitory neurotransmission in spinal substantia gelatinosa neurons of mouse. Pain 129:195–209PubMedGoogle Scholar
  36. Fischbach T, Greffrath W, Nawrath H, Treede RD (2007) Effects of anandamide and noxious heat on intracellular calcium concentration in nociceptive drg neurons of rats. J Neurophysiol 98:929–938PubMedGoogle Scholar
  37. Fortin DA, Srivastava T, Dwarakanath D, Pierre P, Nygaard S, Derkach VA, Soderling TR (2012) Brain‐derived neurotrophic factor activation of CaM‐kinase kinase via transient receptor potential canonical channels induces the translation and synaptic incorporation of GluA1‐containing calcium‐permeable AMPA receptors. J Neurosci 32:8127–8137PubMedCentralPubMedGoogle Scholar
  38. Foulkes T, Wood JN (2007) Mechanisms of cold pain. Channels (Austin) 1:154–160Google Scholar
  39. Frerick H, Keitel W, Kuhn U, Schmidt S, Bredehorst A, Kuhlmann M (2003) Topical treatment of chronic low back pain with a capsicum plaster. Pain 106:59–64PubMedGoogle Scholar
  40. Fu Y, Han J, Ishola T, Scerbo M, Adwanikar H, Ramsey C, Neugebauer V (2008) PKA and ERK, but not PKC, in the amygdala contribute to pain‐related synaptic plasticity and behavior. Mol Pain 4:26PubMedCentralPubMedGoogle Scholar
  41. Fukuoka T, Tokunaga A, Tachibana T, Dai Y, Yamanaka H, Noguchi K (2002) VR1, but not P2X(3), increases in the spared L4 DRG in rats with L5 spinal nerve ligation. Pain 99:111–120PubMedGoogle Scholar
  42. Gauthier ML, Beaudry F, Vachon P (2013) Intrathecal [6]-Gingerol administration alleviates peripherally induced neuropathic pain in male Sprague-Dawley Rats. Phytother Res 27(8):1251–1254PubMedGoogle Scholar
  43. Gerzanich V, Woo SK, Vennekens R, Tsymbalyuk O, Ivanova S, Ivanov A, Geng Z, Chen Z, Nilius B, Flockerzi V, Freichel M, Simard JM (2009) De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med 15:185–191PubMedCentralPubMedGoogle Scholar
  44. Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, Altier C, Cenac N, Zamponi GW, Bautista-Cruz F, Lopez CB, Joseph EK, Levine JD, Liedtke W, Vanner S, Vergnolle N, Geppetti P, Bunnett NW (2007) Protease‐activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578:715–733PubMedCentralPubMedGoogle Scholar
  45. Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278(24):21493–21501PubMedGoogle Scholar
  46. Güler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414PubMedGoogle Scholar
  47. Hajós M, Jancsó G, Engberg G (1987) Capsaicin‐induced excitation of locus coeruleus neurons. Acta Physiol Scand 129:415–420PubMedGoogle Scholar
  48. Hausmann ON (2003) Post‐traumatic inflammation following spinal cord injury. Spinal Cord 41:369–378PubMedGoogle Scholar
  49. Hjornevik T, Schoultz BW, Marton J, Gjerstad J, Drzezga A, Henriksen G, Willoch F (2010) Spinal long‐term potentiation is associated with reduced opioid neurotransmission in the rat brain. Clin Physiol Funct Imaging 30:285–293PubMedGoogle Scholar
  50. Honore P, Chandran P, Hernandez G, Gauvin DM, Mikusa JP, Zhong C, Joshi SK, Ghilardi JR, Sevcik MA, Fryer RM, Segreti JA, Gomtsyan A, Lee C-H, Kort ME, Reilly RM, Surowy CS, Kym PR, Mantyh PW, Sullivan JP, Jarvis MF, Faltynek CR (2000) Repeated dosing of ABT-102, a potent and selective TRPV1 antagonist, enhances TRPV1-mediated analgesic activity in rodents, but attenuates antagonist‐induced hyperthermia. Pain 99:111–120Google Scholar
  51. Huang SM, Lee H, Chung MK, Park U, Yu YY, Bradshaw HB, Coulombe PA, Walker JM, Caterina MJ (2008) Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 28:13727–13737PubMedCentralPubMedGoogle Scholar
  52. Huang SM, Li X, Yu Y, Wang J, Caterina MJ (2011) TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. Mol Pain 7:37PubMedCentralPubMedGoogle Scholar
  53. Hudson LJ, Bevan S, Wotherspoon G, Gentry C, Fox A, Winter J (2001) VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur J Neurosci 13:2105–2114PubMedGoogle Scholar
  54. Hyllienmark L, Alstrand N, Jonsson B, Ludvigsson J, Cooray G, Wahlberg-Topp J (2013) Early electrophysiological abnormalities and clinical neuropathy: a prospective study in patients with type 1 diabetes. Diabetes Care doi: 10.2337/dc12-2226
  55. Jahanshaki M, Pitt P, Williams I (1989) Pain avoidance in rheumatoid arthritis. J Psychosomat Res 33:579–589Google Scholar
  56. Jeffry JA, Yu SQ, Sikand P, Parihar A, Evans MS, Premkumar LS (2009) Selective targeting of TRPV1 expressing sensory nerve terminals in the spinal cord for long lasting analgesia. PLoS One 4:e7021PubMedCentralPubMedGoogle Scholar
  57. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:57–68PubMedGoogle Scholar
  58. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265PubMedGoogle Scholar
  59. Jørum E, Warncke T, Stubhaug A (2003) Cold allodynia and hyperalgesia in neuropathic pain: the effect of N methyl-D-aspartate (NMDA) receptor antagonist ketamine-a double-blind, cross-over comparison with alfentanil and placebo. Pain 101:229–235PubMedGoogle Scholar
  60. Kanai Y, Nakazato E, Fujiuchi A, Hara T, Imai A (2005) Involvement of an increased spinal TRPV1 sensitization through its up‐regulation in mechanical allodynia of CCI rats. Neuropharmacology 49:977–984PubMedGoogle Scholar
  61. Kanai Y, Hara T, Imai A (2006) Participation of the spinal TRPV1 receptors in formalin-evoked pain transduction: a study using a selective TRPV1 antagonist, iodo-resiniferatoxin. J Pharm Pharmacol 58:489–493PubMedGoogle Scholar
  62. Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci U S A 106:1273–1278PubMedCentralPubMedGoogle Scholar
  63. Katsura H, Obata K, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Sakagami M, Noguchi K (2006) Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp Neurol 200:112–123PubMedGoogle Scholar
  64. Kim SR, Kim SU, Oh U, Jin BK (2006) Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+‐mediated mitochondrial damage and cytochrome c release. J Immunol 177:4322–4329PubMedGoogle Scholar
  65. Knowlton WM, Daniels RL, Palkar R, McCoy DD, McKemy DD (2011) Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PLoS One 6:e25894PubMedCentralPubMedGoogle Scholar
  66. Knowlton WM, Palkar R, Lippoldt EK, McCoy DD, Baluch F, Chen J, McKemy DD (2013) A sensory-labeled line for cold: TRPM8‐expressing sensory neurons define the cellular basis for cold, cold pain, and cooling mediated analgesia. J Neurosci 33:2837–2848PubMedCentralPubMedGoogle Scholar
  67. Koerber HR, McIlwrath SL, Lawson JJ, Malin SA, Anderson CE, Jankowski MP, Davis BM (2010) Cutaneous C-polymodal fibers lacking TRPV1 are sensitized to heat following inflammation, but fail to drive heat hyperalgesia in the absence of TPV1 containing C‐heat fibers. Mol Pain 6:58PubMedCentralPubMedGoogle Scholar
  68. Koltzenburg M, Scadding J (2001) Neuropathic pain. Curr Opin Neurol 14:641–647PubMedGoogle Scholar
  69. Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F, Marsh S, Woods CG, Jones NG, Paterson KJ, Fricker FR, Villegas A, Acosta N, Pineda-Trujillo NG, Ramírez JD, Zea J, Burley MW, Bedoya G, Bennett DL, Wood JN, Ruiz-Linares A (2010) A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66:671–680PubMedGoogle Scholar
  70. Kuner R (2010) Central mechanisms of pathological pain. Nat Med 16:1258–1266PubMedGoogle Scholar
  71. Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289PubMedGoogle Scholar
  72. Lappin SC, Randall AD, Gunthorpe MJ, Morisset V (2006) TRPV1 antagonist, SB-366791, inhibits glutamatergic synaptic transmission in rat spinal dorsal horn following peripheral inflammation. Eur J Pharmacol 540:73–81PubMedGoogle Scholar
  73. Lauria G, Morbin M, Lombardi R, Capobianco R, Camozzi F, Pareyson D, Manconi M, Geppetti P (2006) Expression of capsaicin receptor immunoreactivity in human peripheral nervous system and in painful neuropathies. J Peripher Nerv Syst 11:262–271PubMedGoogle Scholar
  74. Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci U S A 100:13698–13703PubMedCentralPubMedGoogle Scholar
  75. Liedtke W, Choe Y, Martí-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535PubMedCentralPubMedGoogle Scholar
  76. Liu B, Yao J, Zhu MX, Qin F (2011) Hysteresis of gating underlines sensitization of TRPV3 channels. J Gen Physiol 138:509–520PubMedCentralPubMedGoogle Scholar
  77. Loyd DR, Weiss G, Henry MA, Hargreaves KM (2011) Serotonin increases the functional activity of capsaicinsensitive rat trigeminal nociceptors via peripheral serotonin receptors. Pain 152:2267–2276PubMedCentralPubMedGoogle Scholar
  78. Luo H, Cheng J, Han JS, Wan Y (2004) Change of vanilloid receptor 1 expression in dorsal root ganglion and spinal dorsal horn during inflammatory nociception induced by complete Freund's adjuvant in rats. Neuroreport 15:655–658PubMedGoogle Scholar
  79. Ma S, Yu H, Zhao Z, Luo Z, Chen J, Ni Y, Jin R, Ma L, Wang P, Zhu Z, Li L, Zhong J, Liu D, Nilius B (2012) Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity. J Mol Cell Biol 4:88–96PubMedGoogle Scholar
  80. Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A (2007) An ion channel essential for sensing chemical damage. J Neurosci 27:11412–11415PubMedGoogle Scholar
  81. Maione S, Bisogno T, de Novellis V, Palazzo E, Cristino L, Valenti M, Petrosino S, Guglielmotti V, Rossi F, Di Marzo V (2006) Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 receptors. J Pharmacol Exp Ther 316:969–982PubMedGoogle Scholar
  82. McGaraughty S, Chu KL, Bitner RS, Martino B, El Kouhen R, Han P, Nikkel AL, Burgard EC, Faltynek CR, Jarvis MF (2003) Capsaicin infused into the PAG affects rat tail flick responses to noxious heat and alters neuronal firing in the RVM. J Neurophysiol 90:2702–2710PubMedGoogle Scholar
  83. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58PubMedGoogle Scholar
  84. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 104:13525–30PubMedCentralPubMedGoogle Scholar
  85. Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10:850–860PubMedGoogle Scholar
  86. Mishra SK, Tisel SM, Orestes P, Bhangoo SK, Hoon MA (2011) TRPV1‐lineage neurons are required for thermal sensation. EMBO J 30:582–593PubMedCentralPubMedGoogle Scholar
  87. Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472PubMedGoogle Scholar
  88. Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Tominaga M (2005) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 1:3PubMedCentralPubMedGoogle Scholar
  89. O’Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, Dickenson AH (2012) Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev 64:939–971PubMedCentralPubMedGoogle Scholar
  90. Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 115:2393–2401PubMedCentralPubMedGoogle Scholar
  91. Ossipov MH, Dussor GO, Porreca F (2010) Central modulation of pain. J Clin Invest 120:3779–3787PubMedCentralPubMedGoogle Scholar
  92. Palazzo E, de Novellis V, Marabese I, Cuomo D, Rossi F, Berrino L, Maione S (2002) Interaction between vanilloid and glutamate receptors in the central modulation of nociception. Eur J Pharmacol 439:69–75PubMedGoogle Scholar
  93. Park KM, Max MB, Robinovitz E, Gracely RH, Bennett GJ (1995) Effects of intravenous ketamine, alfentanil, or placebo on pain, pinprick hyperalgesia, and allodynia produced by intradermal capsaicin in human subjects. Pain 63:163–172PubMedGoogle Scholar
  94. Park CK, Xu ZZ, Liu T, Lü N, Serhan CN, Ji RR (2011) Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1. J Neurosci 31:18433–18438PubMedCentralPubMedGoogle Scholar
  95. Patte-Mensah C, Kappes V, Freund-Mercier MJ, Tsutsui K, Mensah-Nyagan AG (2003) Cellular distribution and bioactivity of the key steroidogenic enzyme, cytochrome P450side chain cleavage, in sensory neural pathways. J Neurochem 86:1233–1246PubMedGoogle Scholar
  96. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002a) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715PubMedGoogle Scholar
  97. Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A (2002b) A heat‐sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049PubMedGoogle Scholar
  98. Perin-Martins A, Teixeira JM, Tambeli CH, Parada CA, Fischer L (2013) Mechanisms underlying transient receptor potential ankyrin 1 (TRPA1)-mediated hyperalgesia and edema. J Peripher Nerv Syst 18:62–74PubMedGoogle Scholar
  99. Perl ER (2011) Pain mechanisms: a commentary on concepts and issues. Prog Neurobiol 94:20–38PubMedCentralPubMedGoogle Scholar
  100. Petrus M, Peier AM, Bandell M, Hwang SW, Huynh T, Olney N, Jegla T, Patapoutian A (2007) A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain 3:40PubMedCentralPubMedGoogle Scholar
  101. Phelan KD, Shwe UT, Abramowitz J, Wu H, Rhee SW, Howell MD, Gottschall PE, Freichel M, Flockerzi V, Birnbaumer L, Zheng F (2013) Canonical transient receptor channel 5 (TRPC5) and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Mol Pharmacol 83:429–438PubMedCentralPubMedGoogle Scholar
  102. Phelps CB, Wang RR, Choo SS, Gaudet R (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285:731–740PubMedCentralPubMedGoogle Scholar
  103. Pogorzala LA, Mishra SK, Hoon MA (2013) The cellular code for mammalian thermosensation. J Neurosci 33(13):5533–5541PubMedCentralPubMedGoogle Scholar
  104. Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408:985–990PubMedGoogle Scholar
  105. Proudfoot CJ, Garry EM, Cottrell DF, Rosie R, Anderson H, Robertson DC, Fleetwood-Walker SM, Mitchell R (2006) Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr Biol 16:1591–1605PubMedGoogle Scholar
  106. Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ, Raouf R, Gringhuis M, Sexton JE, Abramowitz J, Taylor R, Forge A, Ashmore J, Kirkwood N, Kros CJ, Richardson GP, Freichel M, Flockerzi V, Birnbaumer L, Wood JN (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2:120068PubMedCentralPubMedGoogle Scholar
  107. Rahman W, D’Mello R, Dickenson AH (2008) Peripheral nerve injury-induced changes in spinal alpha(2)-adrenoceptor-mediated modulation of mechanically evoked dorsal horn neuronal responses. J Pain 9:350–359PubMedGoogle Scholar
  108. Ramachandran R, Hyun E, Zhao L, Lapointe TK, Chapman K, Hirota CL, Ghosh S, McKemy DD, Vergnolle N, Beck PL, Altier C, Hollenberg MD (2013) TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc Natl Acad Sci U S A 110:7476–7481PubMedCentralPubMedGoogle Scholar
  109. Rivat C, Becker C, Blugeot A, Zeau B, Mauborgne A, Pohl M, Benoliel JJ (2010) Chronic stress induces transient spinal neuroinflammation, triggering sensory hypersensitivity and long‐lasting anxiety‐induced hyperalgesia. Pain 150:358–368PubMedGoogle Scholar
  110. Roberts JC, Davis JB, Benham CD (2004) [3H]Resiniferatoxin autoradiography in the CNS of wild‐type and TRPV1 null mice defines TRPV1 (VR-1) protein distribution. Brain Res 995:176–183PubMedGoogle Scholar
  111. Sang CN, Gracely RH, Max MB, Bennett GJ (1996) Capsaicin-evoked mechanical allodynia and hyperalgesia cross nerve territories. Evidence for a central mechanism. Anesthesiology 85:491–496PubMedGoogle Scholar
  112. Schwartz ES, La JH, Scheff NN, Davis BM, Albers KM, Gebhart GF (2013) TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis. J Neurosci 33:5603–5611PubMedCentralPubMedGoogle Scholar
  113. Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB (2002) TRPV3 is a temperature‐sensitive vanilloid receptor‐like protein. Nature 418:186–190PubMedGoogle Scholar
  114. Spicarová D, Palecek J (2008) The role of spinal cord vanilloid (TRPV1) receptors in pain modulation. Physiol Res 57(Suppl 3):S69–S77PubMedGoogle Scholar
  115. Starowicz K, Maione S, Cristino L, Palazzo E, Marabese I, Rossi F, de Novellis V, Di Marzo V (2007) Tonic endovanilloid facilitation of glutamate release in brainstem descending antinociceptive pathways. J Neurosci 27:13739–13749PubMedGoogle Scholar
  116. Steenland HW, Ko SW, Wu LJ, Zhuo M (2006) Hot receptors in the brain. Mol Pain 2:34PubMedCentralPubMedGoogle Scholar
  117. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP‐like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829PubMedGoogle Scholar
  118. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702PubMedGoogle Scholar
  119. Stucky CL, Dubin AE, Jeske NA, Malin SA, McKemy DD, Story GM (2009) Roles of transient receptor potential channels in pain. Brain Res Rev 60:2–23PubMedCentralPubMedGoogle Scholar
  120. Szabo T, Biro T, Gonzalez AF, Palkovits M, Blumberg PM (2002) Pharmacological characterization of vanilloid receptor located in the brain. Brain Res Mol Brain Res 98:51–57PubMedGoogle Scholar
  121. Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, Margolskee RF, Nilius B (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438:1022–1025PubMedGoogle Scholar
  122. Talbot S, Dias JP, Lahjouji K, Bogo MR, Campos MM, Gaudreau P, Couture R (2012) Activation of TRPV1 by capsaicin induces functional kinin B(1) receptor in rat spinal cord microglia. J Neuroinflammation 9:16PubMedCentralPubMedGoogle Scholar
  123. Topolnik L, Azzi M, Morin F, Kougioumoutzakis A, Lacaille JC (2006) mGluR1/5 subtype‐specific calcium signalling and induction of long‐term potentiation in rat hippocampal oriens/alveus interneurones. J Physiol 575(Pt 1):115–131PubMedCentralPubMedGoogle Scholar
  124. Tracey WD, Wilson RI, Laurent G, Benzer S (2003) painless, a Drosophila gene essential for nociception. Cell 113:261–273PubMedGoogle Scholar
  125. Vellani V, Mapplebeck S, Moriondo A, Davis JB, McNaughton PA (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 534:813–825PubMedCentralPubMedGoogle Scholar
  126. Vilceanu D, Stucky CL (2010) TRPA1 mediates mechanical currents in the plasma membrane of mouse sensory neurons. PLoS One 5:e12177PubMedCentralPubMedGoogle Scholar
  127. Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, Oberwinkler J, Vennekens R, Gudermann T, Nilius B, Voets T (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70:482–494PubMedGoogle Scholar
  128. Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Düfer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol Dec 10(12):1421–1430Google Scholar
  129. Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, Cui X, Tominaga M, Noguchi K (2008) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131:1241–1251PubMedGoogle Scholar
  130. Watkins LR, Milligan ED, Maier SF (2001a) Glial activation: a driving force for pathological pain. Trends Neurosci 24:450–455PubMedGoogle Scholar
  131. Watkins LR, Milligan ED, Maier SF (2001b) Spinal cord glia: new players in pain. Pain 93:201–205PubMedGoogle Scholar
  132. Willis WD (2002) Long‐term potentiation in spinothalamic neurons. Brain Res Brain Res Rev 40:202–214PubMedGoogle Scholar
  133. Willis WD (2009) The role of TRPV1 receptors in pain evoked by noxious thermal and chemical stimuli. Exp Brain Res 196:5–11PubMedGoogle Scholar
  134. Wilson-Gerwing TD, Dmyterko MV, Zochodne DW, Johnston JM, Verge VM (2005) Neurotrophin-3 suppresses thermal hyperalgesia associated with neuropathic pain and attenuates transient receptor potential vanilloid receptor-1 expression in adult sensory neurons. J Neurosci 25:758–67PubMedGoogle Scholar
  135. Woodbury CJ, Zwick M, Wang S, Lawson JJ, Caterina MJ, Koltzenburg M, Albers KM, Koerber HR, Davis BM (2004) Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J Neurosci 24:6410–6415PubMedGoogle Scholar
  136. Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calcium‐permeable temperature‐sensitive cation channel. Nature 418:181–186PubMedGoogle Scholar
  137. Xu JT, Xin WJ, Zang Y, Wu CY, Liu XG (2006) The role of tumor necrosis factor‐alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain 123:306–321PubMedGoogle Scholar
  138. Yip PK, Malaspina A (2012) Spinal cord trauma and the molecular point of no return. Mol Neurodegener 7:6PubMedCentralPubMedGoogle Scholar
  139. Zhang N, Inan S, Cowan A, Sun R, Wang JM, Rogers TJ, Caterina M, Oppenheim JJ (2005a) A proinflammatory chemokine, CCL3, sensitizes the heat‐ and capsaicin-gated ion channel TRPV1. Proc Natl Acad Sci U S A 102:4536–4541PubMedCentralPubMedGoogle Scholar
  140. Zhang X, Huang J, McNaughton PA (2005b) NGF rapidly increases membrane expression of. TRPV1 heat‐gated ion channels EMBO J 24(24):4211–4223Google Scholar
  141. Zhang X, Li L, McNaughton PA (2008) Proinflammatory mediators modulate the heat‐activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron 59:450–461PubMedGoogle Scholar
  142. Zhou Y, Li GD, Zhao ZQ (2003) State‐dependent phosphorylation of epsilon‐isozyme of protein kinase C in adult rat dorsal root ganglia after inflammation and nerve injury. J Neurochem 85:571–580PubMedGoogle Scholar
  143. Zhuang ZY, Xu H, Clapham DE, Ji RR (2004) Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci 24:8300–8309PubMedGoogle Scholar
  144. Zschenderlein C, Gebhardt C, von Bohlen Und Halbach O, Kulisch C, Albrecht D (2011) Capsaicin‐induced changes in LTP in the lateral amygdala are mediated by TRPV1. PLoS One 6:e16116PubMedCentralPubMedGoogle Scholar
  145. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA (2007) Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10:277–279PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jane E. Sexton
    • 1
  • Jeffrey Vernon
    • 1
  • John N. Wood
    • 1
  1. 1.Molecular Nociception Group, Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK

Personalised recommendations