A Sorted Semantic Framework for Applied Process Calculi (Extended Abstract)

  • Johannes Borgström
  • Ramūnas Gutkovas
  • Joachim Parrow
  • Björn Victor
  • Johannes Åman Pohjola
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8358)


Applied process calculi include advanced programming constructs such as type systems, communication with pattern matching, encryption primitives, concurrent constraints, nondeterminism, process creation, and dynamic connection topologies. Several such formalisms, e.g. the applied pi calculus, are extensions of the the pi-calculus; a growing number is geared towards particular applications or computational paradigms.

Our goal is a unified framework to represent different process calculi and notions of computation. To this end, we extend our previous work on psi-calculi with novel abstract patterns and pattern matching, and add sorts to the data term language, giving sufficient criteria for subject reduction to hold. Our framework can accommodate several existing process calculi; the resulting transition systems are isomorphic to the originals up to strong bisimulation. We also demonstrate different notions of computation on data terms, including cryptographic primitives and a lambda-calculus with erratic choice. Substantial parts of the meta-theory of sorted psi-calculi have been machine-checked using Nominal Isabelle.


Pattern Match Operational Semantic Data Term Tuple Space Process Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for mobile processes with nominal data and logic. LMCS 7(1:11) (2011)Google Scholar
  2. 2.
    Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput. 186, 165–193 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: Proceedings of POPL, pp. 104–115. ACM, January 2001Google Scholar
  4. 4.
    Haack, C., Jeffrey, A.: Pattern-matching spi-calculus. Inf. Comput. 204(8), 1195–1263 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Gelernter, D.: Generative communication in Linda. ACM TOPLAS 7(1), 80–112 (1985)CrossRefzbMATHGoogle Scholar
  6. 6.
    Schmitt, A., Stefani, J.-B.: The KELL calculus: a family of higher-order distributed process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 146–178. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Milner, R.: The polyadic \(\pi \)-calculus: a tutorial. In: Bauer, F.L., Brauer, W., Schwichtenberg, H. (eds.) Logic and Algebra of Specification. NATO ASI, vol. 94, pp. 203–246. Springer, Heidelberg (1993)Google Scholar
  8. 8.
    Hüttel, H.: Typed \(\psi \)-calculi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 265–279. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Blanchet, B.: Using Horn clauses for analyzing security protocols. In Cortier, V., Kremer, S., eds.: Formal Models and Techniques for Analyzing Security Protocols. Cryptology and Information Security Series, vol. 5, pp. 86–111. IOS Press (2011)Google Scholar
  10. 10.
    Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 141–156. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Given-Wilson, T., Gorla, D., Jay, B.: Concurrent pattern calculus. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 244–258. Springer, Heidelberg (2010)Google Scholar
  12. 12.
    Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In: Proceedings of the POPL, pp. 372–385 (1996)Google Scholar
  13. 13.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects Comput. 13, 341–363 (2001)CrossRefGoogle Scholar
  14. 14.
    Johansson, M., Victor, B., Parrow, J.: Computing strong and weak bisimulations for psi-calculi. J. Logic Algebraic Program. 81(3), 162–180 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Johansson, M., Bengtson, J., Parrow, J., Victor, B.: Weak equivalences in psi-calculi. In: Proceedings of LICS 2010, pp. 322–331. IEEE (2010)Google Scholar
  16. 16.
    Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle River (1989)zbMATHGoogle Scholar
  17. 17.
    Sangiorgi, D.: Expressing mobility in process algebras: first-order and higher-order paradigms. Ph.D thesis, University of Edinburgh, CST-99-93 (1993)Google Scholar
  18. 18.
    Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in \(\pi \)-calculus. Nord. J. Comput. 10(2), 70–98 (2003)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf. Theor. 29(2), 198–208 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Borgström, J., Gutkovas, R., Rodhe, I., Victor, B.: A parametric tool for applied process calculi. In: Proceedings of the 13th International Conference on Application of Concurrency to System Design (ACSD’13). IEEE (2013)Google Scholar
  21. 21.
    Parrow, J., Borgström, J., Raabjerg, P., Åman Pohjola, J.: Higher-order psi-calculi. Mathematical Structures in Computer Science FirstView (June 2013)Google Scholar
  22. 22.
    Åman Pohjola, J., Borgström, J., Parrow, J., Raabjerg, P., Rodhe, I.: Negative premises in applied process calculi. Technical Report 2013-014, Department of Information Technology, Uppsala University (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Johannes Borgström
    • 1
  • Ramūnas Gutkovas
    • 1
  • Joachim Parrow
    • 1
  • Björn Victor
    • 1
  • Johannes Åman Pohjola
    • 1
  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations