Advertisement

Group-by-Group Probabilistic Bisimilarities and Their Logical Characterizations

  • Marco Bernardo
  • Rocco De Nicola
  • Michele LoretiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8358)

Abstract

We provide two interpretations, over nondeterministic and probabilistic processes, of PML, the probabilistic version of Hennessy-Milner logic used by Larsen and Skou to characterize bisimilarity of probabilistic processes without internal nondeterminism. We also exhibit two new bisimulation-based equivalences, which are in full agreement with the two different interpretations of PML. The new equivalences are coarser than the bisimilarity for nondeterministic and probabilistic processes proposed by Segala and Lynch, which instead is in agreement with a version of Hennessy-Milner logic extended with an additional probabilistic operator interpreted over state distributions rather than over individual states. The modal logic characterizations provided for the new equivalences thus offer a uniform framework for reasoning on purely nondeterministic processes, reactive probabilistic processes, and nondeterministic and probabilistic processes.

References

  1. 1.
    Aziz, A., Singhal, V., Balarin, F., Brayton, R., Sangiovanni-Vincentelli, A.: It usually works: the temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Bernardo, M., De Nicola, R., Loreti, M.: A uniform framework for modeling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences. Inf. Comput. 225, 29–82 (2013)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bernardo, M., De Nicola, R., Loreti, M.: Revisiting bisimilarity and its modal logic for nondeterministic and probabilistic processes. Technical report 06/2013, IMT Institute for Advanced Studies Lucca (2013). http://eprints.imtlucca.it/1553/
  4. 4.
    Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Browne, M., Clarke, E., Grümberg, O.: Characterizing finite Kripke structures in propositional temporal logic. Theor. Comput. Sci. 59, 115–131 (1988)CrossRefzbMATHGoogle Scholar
  6. 6.
    Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8, 244–263 (1986)CrossRefzbMATHGoogle Scholar
  7. 7.
    Crafa, S., Ranzato, F.: A spectrum of behavioral relations over LTSs on probability distributions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 124–139. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game refinement relations and metrics. Logical Meth. Comput. Sci. 4(3–7), 1–28 (2008)Google Scholar
  9. 9.
    Derman, C.: Finite State Markovian Decision Processes. Academic Press, New York (1970)zbMATHGoogle Scholar
  10. 10.
    Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. Inf. Comput. 179, 163–193 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities. In: Proceedings of RTSS 1990, pp. 278–287. IEEE-CS Press (1990)Google Scholar
  12. 12.
    Hennessy, M.: Exploring probabilistic bisimulations, part I. Formal Aspects Comput. 24, 749–768 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM 32, 137–162 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Hermanns, H., Parma, A., Segala, R., Wachter, B., Zhang, L.: Probabilistic logical characterization. Inf. Comput. 209, 154–172 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command language. Sci. Comput. Program. 28, 171–192 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Keller, R.: Formal verification of parallel programs. Commun. ACM 19, 371–384 (1976)CrossRefzbMATHGoogle Scholar
  17. 17.
    Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94, 1–28 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Larsen, K., Skou, A.: Compositional verification of probabilistic processes. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 456–471. Springer, Heidelberg (1992)Google Scholar
  19. 19.
    Parma, A., Segala, R.: Logical characterizations of bisimulations for discrete probabilistic systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 287–301. Springer, Heidelberg (2007)Google Scholar
  20. 20.
    Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Rabin, M.: Probabilistic automata. Inf. Control 6, 230–245 (1963)CrossRefzbMATHGoogle Scholar
  22. 22.
    Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis (1995)Google Scholar
  23. 23.
    Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994)Google Scholar
  24. 24.
    Segala, R., Turrini, A.: Comparative analysis of bisimulation relations on alternating and non-alternating probabilistic models. In: Proceedings of QEST 2005, pp. 44–53. IEEE-CS Press (2005)Google Scholar
  25. 25.
    Sokolova, A., de Vink, E.: Probabilistic automata: system types, parallel composition and comparison. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 1–43. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Song, L., Zhang, L., Godskesen, J.C.: Bisimulations meet PCTL equivalences for probabilistic automata. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 108–123. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Tracol, M., Desharnais, J., Zhioua, A.: Computing distances between probabilistic automata. In: Proceedings of QAPL 2011. EPTCS, vol. 57, pp. 148–162 (2011)Google Scholar
  28. 28.
    van Glabbeek, R., Smolka, S., Steffen, B.: Reactive, generative and stratified models of probabilistic processes. Inf. Comput. 121, 59–80 (1995)CrossRefzbMATHGoogle Scholar
  29. 29.
    Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of FOCS 1985, pp. 327–338. IEEE-CS Press (1985)Google Scholar
  30. 30.
    Yi, W., Larsen, K.: Testing probabilistic and nondeterministic processes. In: Proceedings of PSTV 1992, pp. 47–61. North-Holland (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marco Bernardo
    • 1
  • Rocco De Nicola
    • 2
  • Michele Loreti
    • 3
    Email author
  1. 1.Dipartimento di Scienze di Base e FondamentiUniversità di UrbinoUrbinoItaly
  2. 2.IMTInstitute for Advanced Studies LuccaLuccaItaly
  3. 3.Dipartimento di Statistica, Informatica, ApplicazioniUniversità di FirenzeFirenzeItaly

Personalised recommendations