Open image in new windowIntroduction: Remote Sensing Techniques for Landslide Mapping and Monitoring

Conference paper

Abstract

Remote sensing is an effective tool for landslide mapping and monitoring. This chapter provides a general overview of the recent applications of optical and radar images for landslide detection, mapping and monitoring with special attention to SAR interferometry that has proved as a promising technique in landslide studies.

Keywords

Landslide Remote sensing SAR interferometry Optical imagery 

References

  1. Adler RF, Huffman GJ, Bolvin DT, Curtis S, Nelkin EJ (2000) Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J Appl Meteor 39(12):2007–2223CrossRefGoogle Scholar
  2. Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Nat Hazards Earth Syst Sci 7(6):637–650CrossRefGoogle Scholar
  3. Baum RL, Godt JW (2010) Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 7:259–272CrossRefGoogle Scholar
  4. Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005) Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslide 2(4):329–342CrossRefGoogle Scholar
  5. Cheng K, Wei C, Chang S (2004) Locating landslides using multi- temporal satellite images. Adv Space Res 33:296–301CrossRefGoogle Scholar
  6. Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board Special Report 247, National Academy Press, WA, pp 36–75Google Scholar
  7. Fornaro G, Pauciullo A, Serafino F (2009) Deformation Monitoring over large areas with multipass differential SAR Interferometry: a new approach based on the use of spatial differences. Int J Remote Sens 30(6):1455–1478CrossRefGoogle Scholar
  8. Grebby S, Naden J, Cunningham D, Tansey K (2011) Integrating airborne multispectral imagery and airborne LiDAR data for enhanced lithological mapping in vegetated terrain. Remote-sens Environ 115(1):214–226CrossRefGoogle Scholar
  9. Hervás J, Barredo J, Rosin P, Pasuto A, Mantovani F, Silvano S (2003) Monitoring landslides from optical remotely sensed imagery: the case story of Tessina landslide, Italy. Geomorphology 54:63–75CrossRefGoogle Scholar
  10. Hong Y, Adler R, Huffman, G (2006) Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys Res Lett 33(22), L22402. doi:10.1029/2006GL028010
  11. Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43(2):23–44Google Scholar
  12. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeor 8(1):38–55CrossRefGoogle Scholar
  13. Kimura H, Yamaguchi Y (2000) Detection of landslide areas using radar interferometry. Photogramm Eng Remote Sens 66(3):337–344Google Scholar
  14. Kirschbaum DB, Adler R, Hong Y, Lerner-Lam A (2009) Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Nat Hazards Earth Syst Sci 9(3):673–686CrossRefGoogle Scholar
  15. Lu P, Stumpf A, Kerle N, Casagli N (2011) Object-oriented change detection for landslide rapid mapping. Geosci Remote Sens Lett IEEE 8(4):701–705CrossRefGoogle Scholar
  16. Marcelino EV, Formaggio AR, Maed E (2009) Landslide inventory using image fusion techniques in Brazil. Int J Appl Earth Observ Geoinform 11(3):181–191CrossRefGoogle Scholar
  17. Martha T, Kerle N, van Westen CJ, Kumar K (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116(1–2):24–36CrossRefGoogle Scholar
  18. Meisina C, Zucca F, Conconi F, Verri F, Fossati D, Ceriani M, Allievi J (2007) Use of permanent scatterers technique for large-scale mass movement investigation. Quatern Int 171–172:90–107CrossRefGoogle Scholar
  19. Metternicht G, Hurni L, Gogu R (2005) Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens Environ 98:284–303CrossRefGoogle Scholar
  20. Nichol J, Wong MS (2005) Satellite remote sensing for detailed landslide inventories using change detection and image fusion. Int J Remote Sens 26(9):1913–1926CrossRefGoogle Scholar
  21. Prati C, Ferretti A, Perissin D (2010) Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. J Geodyn 49(3–4):161–170CrossRefGoogle Scholar
  22. Ramli M, Yusof N, Yusoff M, Juahir H, Shafri H (2010) Lineament mapping and its application in landslide hazard assessment: a review. Bull Eng Geol Environ 69(2):215–233CrossRefGoogle Scholar
  23. Refice A, Guerriero L, Bovenga F, Wasowski J, Atzori S, Ferrari R, Marsella M (2001) Detecting landslide activity by SAR interferometry. Proc ERS-ENVISAT Symposium, GoteborgGoogle Scholar
  24. Rizzo V, Tesauro M (2000) SAR interferometry and field data of Randazzo landslide (Eastern Sicily, Italy). Phys Chem Earth (B) 25(9):771–780CrossRefGoogle Scholar
  25. Rott H, Mayer C, Siegel A (2000) On the operational potential of SAR interferometry for monitoring mass movements in alpine areas. Proc of the 3rd European Conf on Synthetic Aperture Radar (EUSAR 2000), Munich, 23–25 May 2000, pp 43–46Google Scholar
  26. Sarkar S, Kanungo DP (2004) An integrated approach for landslide susceptibility mapping using remote-sensing and GIS. Photogramm Eng Remote Sens 70(5):617–625CrossRefGoogle Scholar
  27. Schulz WH (2007) Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Eng Geol 89(1–2):67–87CrossRefGoogle Scholar
  28. Singhroy V (2002) Landslide hazards: CEOS, The use of earth observing satellites for hazard support: Assessments and scenarios. Final report of the CEOS disaster management support group, NOAA, p 98Google Scholar
  29. Singhroy V, Molch K (2004) Characterizing and monitoring rockslides from SAR techniques. Adv Space Res 33(3):290–295CrossRefGoogle Scholar
  30. Singhroy V, Mattar K, Gray A (1998) Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images. Adv Space Res 21(3):465–476CrossRefGoogle Scholar
  31. Strozzi T, Farina P, Corsini A, Ambrosi C, Turing M, Zilger J, Wiesmann A, Wegmuller U, Werner C (2005) Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2(3):193–201CrossRefGoogle Scholar
  32. Strozzi T, Delaloye R, Kääb A, Ambrosi C, Perruchoud E, Wegmüller U (2010) Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. J Geophys Res 115:F01014Google Scholar
  33. Tofani V, Segoni S, Agostini A, Catani F, Casagli N (2013a) Technical note: use of remote sensing for landslide studies in Europe. Nat Hazards Earth Syst Sci 13:299–309CrossRefGoogle Scholar
  34. Tofani V, Raspini F, Catani F, Casagli N (2013b) Persistent scatterer interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens 5:1045–1065CrossRefGoogle Scholar
  35. Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of lands slide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410CrossRefGoogle Scholar
  36. Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, VanBeek LPH, Vandekerckhove L (2007) The use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Proc Land 32:754–769CrossRefGoogle Scholar
  37. Van Den Eeckhaut M, Muys B, Van Loy K, Poesen J, Beeckman H (2009) Evidence for repeated re-activation of old landslides under forest. Earth Surf Proc Land 34:352–365CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Earth Sciences DepartmentUniversity FirenzeFlorenceItaly
  2. 2.Hydrometeorology and Remote Sensing Lab, Department of Civil EngineeringUniversity of OklahomaNormanUSA
  3. 3.Environmental ScienceUniversity of OklahomaNormanUSA
  4. 4.Canada Centre for Remote Sensing, Natural ResourcesOttawaCanada

Personalised recommendations