Mining Social Links for Ubiquitous Knowledge Engineering

  • Christoph Scholz
  • Bjoern-Elmar Macek
  • Martin Atzmueller
  • Stephan Doerfel
  • Gerd Stumme
Chapter

Abstract

Exploiting social links is an important issue for enhancing ubiquitous knowledge engineering because they are a substitute for a wide range of properties depending on which relation spans the link: in case of human face-to-face contacts, similar locations or potential knowledge transfer for the people in contact can be derived. This information can be used to improve the quality of ubiquitous services as localization or recommendation systems. We capture this information by deploying active RFID setups at a variety of contexts. In this chapter, we focus especially on working groups and conferences and discuss and evaluate the achieved improvements using the gathered data.

References

  1. 1.
    Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Network 25(3), 211–230 (2003)CrossRefGoogle Scholar
  2. 2.
    Alani, H., Szomszor, M., Cattuto, C., den Broeck, W.V., Correndo, G., Barrat, A.: Live social semantics. In: International Semantic Web Conference (2009)Google Scholar
  3. 3.
    Atzmueller, M., Becker, M., Doerfel, S., Kibanov, M., Hotho, A., Macek, B.E., Mitzlaff, F., Mueller, J., Scholz, C., Stumme, G.: Ubicon: Observing social and physical activities. In: Proc. 4th IEEE Intl. Conf. on Cyber, Physical and Social Computing (CPSCom 2012) (2012)Google Scholar
  4. 4.
    Atzmueller, M., Benz, D., Doerfel, S., Hotho, A., Jäschke, R., Macek, B.E., Mitzlaff, F., Scholz, C., Stumme, G.: Enhancing social interactions at conferences. Inform. Tech. 53(3), 101–107 (2011). DOI 10.1524/itit.2011.0631Google Scholar
  5. 5.
    Atzmueller, M., Doerfel, S., Hotho, A., Mitzlaff, F., Stumme, G.: Face-to-face contacts at a conference: dynamics of communities and roles. In: Modeling and Mining Ubiquitous Social Media, LNAI, vol. 7472 (2012)Google Scholar
  6. 6.
    Barabasi, A.L.: Linked the New Science of Networks. Perseus Publishing, Cambridge (2002)Google Scholar
  7. 7.
    Barrat, A., Cattuto, C., Colizza, V., Pinton, J.F., den Broeck, W.V., Vespignani, A.: High resolution dynamical mapping of social interactions with active RFID. CoRR abs/0811.4170 (2008)Google Scholar
  8. 8.
    Barrat, A., Cattuto, C., Szomszor, M., den Broeck, W.V., Alani, H.: Social dynamics in conferences: Analyses of data from the live social semantics application. In: The Semantic Web - ISWC 2010, Lecture Notes in Computer Science, vol. 6497, pp. 17–33. Springer, Berlin Heidelberg (2010)Google Scholar
  9. 9.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Network 30(1–7), 107–117 (1998)Google Scholar
  10. 10.
    Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.F., Vespignani, A.: Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE 5(7), e11,596 (2010). DOI 10.1371/journal.pone.0011596Google Scholar
  11. 11.
    Dom, B., Eiron, I., Cozzi, A., Zhang, Y.: Graph-based ranking algorithms for e-mail expertise analysis. DMKD ’03, pp. 42–48. ACM, New York (2003)Google Scholar
  12. 12.
    Girba, T., Kuhn, A., Seeberger, M., Ducasse, S.: How developers drive software evolution. InL Intl. Workshop on Principles of Software Evolution, vol. 0, pp. 113–122 (2005). DOI 10.1109/IWPSE.2005.21Google Scholar
  13. 13.
    Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)CrossRefGoogle Scholar
  14. 14.
    Hightower, J., Vakili, C., Borriello, G., Want, R.: Design and calibration of the SpotON Ad-Hoc location sensing system. Tech. rep. (2001)Google Scholar
  15. 15.
    Hindle, A., German, D.M., Holt, R.: What do large commits tell us? a taxonomical study of large commits. MSR ’08. ACM, New York (2008)Google Scholar
  16. 16.
    Isella, L., Romano, M., Barrat, A., Cattuto, C., Colizza, V., Van den Broeck, W., Gesualdo, F., Pandolfi, E., Ravà, L., Rizzo, C., Tozzi, A.: Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. CoRR 1104.2515 (2011)Google Scholar
  17. 17.
    Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., den Broeck, W.V.: What’s in a crowd? Analysis of face-to-face behavioral networks. CoRR 1006.1260 (2010)Google Scholar
  18. 18.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953). DOI 10.1007/BF02289026CrossRefMATHGoogle Scholar
  19. 19.
    Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. KDD ’09. ACM, New York (2009)Google Scholar
  20. 20.
    Leskovec, J., Lang, K.J., Mahoney, M.W.: Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th International Conference on World Wide Web (WWW’10), pp. 631–640. ACM, New York (2010)Google Scholar
  21. 21.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM ’03, pp. 556–559. ACM, New York (2003). DOI 10.1145/956863.956972Google Scholar
  22. 22.
    Lü, L., Zhou, T.: Role of weak ties in link prediction of complex networks. In: Proceedings of the 1st ACM International Workshop on Complex Networks Meet Information & Knowledge Management (CNIKM ’09), pp. 55–58. ACM, New York (2009). DOI 10.1145/1651274.1651285Google Scholar
  23. 23.
    Macek, B.E., Atzmueller, M., Stumme, G.: Profile mining in CVS-logs and face-to-face contacts for recommending software developers. In: SocialCom/PASSAT, pp. 250–257. IEEE (2011)Google Scholar
  24. 24.
    Macek, B.E., Scholz, C., Atzmueller, M., Stumme, G.: Anatomy of a conference. In: Proc. 23rd ACM Conference on Hypertext and Social Media, pp. 245–254. ACM, New York (2012)Google Scholar
  25. 25.
    Mcdonald, D., Ackermann, M.: Just talk to me: a field study of expertise location. In: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work (CSCW’98), pp. 315–324. ACM, New York (1998)Google Scholar
  26. 26.
    Meriac, M., Fiedler, A., Hohendorf, A., Reinhardt, J., Starostik, M., Mohnke, J.: Localization techniques for a mobile museum information system. In: Proceedings of WCI (2007)Google Scholar
  27. 27.
    Minto, S., Murphy, G.C.: Recommending emergent teams. In: MSR ’07, pp. 5. IEEE Computer Society, Washington, DC (2007). http://dx.doi.org/10.1109/MSR.2007.27
  28. 28.
    Murata, T., Moriyasu, S.: Link prediction of social networks based on weighted proximity measures. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI 2007), pp. 85–88. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  29. 29.
    Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: LANDMARK: Indoor location sensing using active RFID. Wireless Network 10(6), 701–710 (2004)CrossRefGoogle Scholar
  30. 30.
    Niculescu, D., Badrinath, B.R.: Ad hoc positioning system (APS) using AOA. In: INFOCOM (2003)Google Scholar
  31. 31.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: MOBICOM, pp. 32–43 (2000)Google Scholar
  32. 32.
    Rappaport, T.: Wireless Communications: Principles and Practice, 2nd edn. Prentice Hall PTR, Upper Saddle River (2001)Google Scholar
  33. 33.
    Scholz, C., Atzmueller, M., Stumme, G.: On the predictability of human contacts: Influence factors and the strength of stronger ties. In: International Conference on Social Computing (SocialCom) (2012), pp. 312–321Google Scholar
  34. 34.
    Scholz, C., Doerfel, S., Atzmueller, M., Hotho, A., Stumme, G.: Resource-aware on-line RFID localization using proximity data. In: ECML/PKDD 2011 (2011)Google Scholar
  35. 35.
    Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.F., Quaggiotto, M., den Broeck, W.V., Régis, C., Lina, B., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6(8), e23176 (2011)CrossRefGoogle Scholar
  36. 36.
    Szomszor, M., Cattuto, C., den Broeck, W.V., Barrat, A., Alani, H.: Semantics, sensors, and the social web: The live social semantics experiments. In: ESWC (2), pp. 196–210 (2010)Google Scholar
  37. 37.
    Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.L.: Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, pp. 1100–1108. ACM, New York (2011). DOI 10.1145/2020408.2020581Google Scholar
  38. 38.
    Zenk, L., Stadtfeld, C.: Dynamic organizations. How to measure evolution and change in organizations by analyzing e-mail communication networks. Procedia Soc. Behav. Sci. 4, 14–25 (2010)Google Scholar
  39. 39.
    Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009). DOI 10.1140/epjb/e2009-00335-8CrossRefMATHGoogle Scholar
  40. 40.
    Zuo, X., Chin, A., Fan, X., Xu, B., Hong, D., Wang, Y., Wang, X.: Connecting people at a conference: A study of influence between offline and online using a mobile social application. In: GreenCom, pp. 277–284 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christoph Scholz
    • 1
  • Bjoern-Elmar Macek
    • 1
  • Martin Atzmueller
    • 1
  • Stephan Doerfel
    • 1
  • Gerd Stumme
    • 1
  1. 1.Knowledge and Data EngineeringKassel UniversityKasselGermany

Personalised recommendations