Neurovascular Events After Subarachnoid Hemorrhage: Focusing on Subcellular Organelles

  • Sheng Chen
  • Haijian Wu
  • Jiping Tang
  • Jianmin Zhang
  • John H. ZhangEmail author
Part of the Acta Neurochirurgica Supplement book series (NEUROCHIRURGICA, volume 120)


Subarachnoid hemorrhage (SAH) is a devastating condition with high morbidity and mortality rates due to the lack of effective therapy. Early brain injury (EBI) and cerebral vasospasm (CVS) are the two most important pathophysiological mechanisms for brain injury and poor outcomes for patients with SAH. CVS has traditionally been considered the sole cause of delayed ischemic neurological deficits after SAH. However, the failure of antivasospastic therapy in patients with SAH supported changing the research target from CVS to other mechanisms. Currently, more attention has been focused on global brain injury within 3 days after ictus, designated as EBI. The dysfunction of subcellular organelles, such as endoplasmic reticulum stress, mitochondrial failure, and autophagy–lysosomal system activation, has developed during EBI and delayed brain injury after SAH. To our knowledge, there is a lack of review articles addressing the direction of organelle dysfunction after SAH. In this review, we discuss the roles of organelle dysfunction in the pathogenesis of SAH and present the opportunity to develop novel therapeutic strategies of SAH via modulating the functions of organelles.


Organelles Subarachnoid Hemorrhage Early Brain Injury Cerebral Vasospasm Therapy 



This study was supported by a National Institutes of Health grant (NS053407) to JH Zhang and by a National Natural Science Foundation of China grant (No.81171096) to JM Zhang.

Conflict of Interest Statement

We declare that we have no conflict of interest.


  1. 1.
    Alaraj A, Charbel FT, Amin-Hanjani S (2009) Peri-operative measures for treatment and prevention of cerebral vasospasm following subarachnoid hemorrhage. Neurol Res 31:651–659PubMedCrossRefGoogle Scholar
  2. 2.
    Bain JM, Moore L, Ren Z, Simonishvili S, Levison SW (2013) Vascular endothelial growth factors A and C are induced in the SVZ following neonatal hypoxia-ischemia and exert different effects on neonatal glial progenitors. Transl Stroke Res 4:158–170PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Baird L, Dinkova-Kostova AT (2011) The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 85:241–272PubMedCrossRefGoogle Scholar
  4. 4.
    Bramlett HM (2013) Importance of sex in the pathophysiology and treatment of acute CNS repair. Transl Stroke Res 4:379–380PubMedCrossRefGoogle Scholar
  5. 5.
    Caner B, Hou J, Altay O, Fuj M 2nd, Zhang JH (2012) Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem 123(Suppl 2):12–21PubMedCrossRefGoogle Scholar
  6. 6.
    Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252PubMedCrossRefGoogle Scholar
  7. 7.
    Chang CZ, Wu SC, Lin CL, Hwang SL, Kwan AL (2012) Purine anti-metabolite attenuates nuclear factor kappaB and related pro-inflammatory cytokines in experimental vasospasm. Acta Neurochir (Wien) 154:1877–1885CrossRefGoogle Scholar
  8. 8.
    Chen LC, Hsu C, Chiueh CC, Lee WS (2012) Ferrous citrate up-regulates the NOS2 through nuclear translocation of NFkappaB induced by free radicals generation in mouse cerebral endothelial cells. PLoS One 7:e46239PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Coppadoro A, Citerio G (2011) Subarachnoid hemorrhage: an update for the intensivist. Minerva Anestesiol 77:74–84PubMedGoogle Scholar
  10. 10.
    Dong Y, Li Y, Feng D, Wang J, Wen H, Liu D, Zhao D, Liu H, Gao G, Yin Z, Qin H (2013) Protective effect of HIF-1alpha against hippocampal apoptosis and cognitive dysfunction in an experimental rat model of subarachnoid hemorrhage. Brain Res 1517:114–121PubMedCrossRefGoogle Scholar
  11. 11.
    Dorsch NW, King MT (1994) A review of cerebral vasospasm in aneurysmal subarachnoid haemorrhage part I: incidence and effects. J Clin Neurosci 1:19–26PubMedCrossRefGoogle Scholar
  12. 12.
    Dzietko M, Derugin N, Wendland MF, Vexler ZS, Ferriero DM (2013) Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke. Transl Stroke Res 4:189–200PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Echigo R, Shimohata N, Karatsu K, Yano F, Kayasuga-Kariya Y, Fujisawa A, Ohto T, Kita Y, Nakamura M, Suzuki S, Mochizuki M, Shimizu T, Chung UI, Sasaki N (2012) Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. J Transl Med 10:80PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH (2013) Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res 4:432–446PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gatti S, Lonati C, Acerbi F, Sordi A, Leonardi P, Carlin A, Gaini SM, Catania A (2012) Protective action of NDP-MSH in experimental subarachnoid hemorrhage. Exp Neurol 234:230–238PubMedCrossRefGoogle Scholar
  16. 16.
    Gump W, Laskowitz DT (2008) Management of post-subarachnoid hemorrhage vasospasm. Curr Atheroscler Rep 10:354–360PubMedCrossRefGoogle Scholar
  17. 17.
    He Z, Ostrowski RP, Sun X, Ma Q, Huang B, Zhan Y, Zhang JH (2012) CHOP silencing reduces acute brain injury in the rat model of subarachnoid hemorrhage. Stroke 43:484–490PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    He Z, Ostrowski RP, Sun X, Ma Q, Tang J, Zhang JH (2012) Targeting C/EBP homologous protein with siRNA attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Exp Neurol 238:218–224PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Herson PS, Palmateer J, Hurn PD (2013) Biological sex and mechanisms of ischemic brain injury. Transl Stroke Res 4:413–419PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hishikawa T, Ono S, Ogawa T, Tokunaga K, Sugiu K, Date I (2008) Effects of deferoxamine-activated hypoxia-inducible factor-1 on the brainstem after subarachnoid hemorrhage in rats. Neurosurgery 62:232–240; discussion 240–231PubMedCrossRefGoogle Scholar
  21. 21.
    Huang L, Wan J, Chen Y, Wang Z, Hui L, Li Y, Xu D, Zhou W (2013) Inhibitory effects of p38 inhibitor against mitochondrial dysfunction in the early brain injury after subarachnoid hemorrhage in mice. Brain Res 1517:133–140PubMedCrossRefGoogle Scholar
  22. 22.
    Jing CH, Wang L, Liu PP, Wu C, Ruan D, Chen G (2012) Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience 213:144–153PubMedCrossRefGoogle Scholar
  23. 23.
    Kassell NF, Sasaki T, Colohan AR, Nazar G (1985) Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 16:562–572PubMedCrossRefGoogle Scholar
  24. 24.
    Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233PubMedCrossRefGoogle Scholar
  25. 25.
    Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642PubMedCrossRefGoogle Scholar
  26. 26.
    Kumari S, Anderson L, Farmer S, Mehta SL, Li PA (2012) Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion. Transl Stroke Res 3:296–304PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lapchak PA, Zhang JH, Noble-Haeusslein LJ (2013) RIGOR guidelines: escalating STAIR and STEPS for effective translational research. Transl Stroke Res 4:279–285PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Lee JY, He Y, Sagher O, Keep R, Hua Y, Xi G (2009) Activated autophagy pathway in experimental subarachnoid hemorrhage. Brain Res 1287:126–135PubMedCrossRefGoogle Scholar
  29. 29.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795PubMedCrossRefGoogle Scholar
  30. 30.
    Lisy K, Peet DJ (2008) Turn me on: regulating HIF transcriptional activity. Cell Death Differ 15:642–649PubMedCrossRefGoogle Scholar
  31. 31.
    Liu Y, Cai H, Wang Z, Li J, Wang K, Yu Z, Chen G (2013) Induction of autophagy by cystatin C: a potential mechanism for prevention of cerebral vasospasm after experimental subarachnoid hemorrhage. Eur J Med Res 18:21PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632PubMedCrossRefGoogle Scholar
  33. 33.
    Ma CX, Yin WN, Cai BW, Wu J, Wang JY, He M, Sun H, Ding JL, You C (2009) Toll-like receptor 4/nuclear factor-kappa B signaling detected in brain after early subarachnoid hemorrhage. Chin Med J (Engl) 122:1575–1581Google Scholar
  34. 34.
    Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426PubMedCrossRefGoogle Scholar
  35. 35.
    Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I, Bach D, Frey A, Marr A, Roux S, Kassell N (2011) Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 10:618–625PubMedCrossRefGoogle Scholar
  36. 36.
    Macdonald RL, Kassell NF, Mayer S, Ruefenacht D, Schmiedek P, Weidauer S, Frey A, Roux S, Pasqualin A (2008) Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke 39:3015–3021PubMedCrossRefGoogle Scholar
  37. 37.
    Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294–309PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Milner E, Harries MD, Vellimana AK, Gidday JM, Han BH, Zipfel GJ (2013) Post-conditioning with isoflurane reduces SAH-induced vasospasm and microthrombosis via hypoxia-inducible factor 1 and nitric oxide synthase. Neurosurgery 60(Suppl 1):181Google Scholar
  39. 39.
    Mizushima N (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12(Suppl 2):1535–1541PubMedCrossRefGoogle Scholar
  40. 40.
    Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873PubMedCrossRefGoogle Scholar
  41. 41.
    Mo H, Chen Y, Huang L, Zhang H, Li J, Zhou W (2013) Neuroprotective effect of tea polyphenols on oxyhemoglobin induced subarachnoid hemorrhage in mice. Oxid Med Cell Longev 2013:743938PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Napetschnig J, Wu H (2013) Molecular basis of NF-kappaB signaling. Annu Rev Biophys 42:443–468PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Naraoka M, Munakata A, Matsuda N, Shimamura N, Ohkuma H (2013) Suppression of the Rho/Rho-kinase pathway and prevention of cerebral vasospasm by combination treatment with statin and fasudil after subarachnoid hemorrhage in rabbit. Transl Stroke Res 4:368–374PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ostrowski RP, Colohan AR, Zhang JH (2005) Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 25:554–571PubMedCrossRefGoogle Scholar
  45. 45.
    Pan H, Wang H, Zhu L, Mao L, Qiao L, Su X (2011) Depletion of Nrf2 enhances inflammation induced by oxyhemoglobin in cultured mice astrocytes. Neurochem Res 36:2434–2441PubMedCrossRefGoogle Scholar
  46. 46.
    Paschen W (2003) Endoplasmic reticulum: a primary target in various acute disorders and degenerative diseases of the brain. Cell Calcium 34:365–383PubMedCrossRefGoogle Scholar
  47. 47.
    Paschen W, Mengesdorf T (2005) Cellular abnormalities linked to endoplasmic reticulum dysfunction in cerebrovascular disease–therapeutic potential. Pharmacol Ther 108:362–375PubMedCrossRefGoogle Scholar
  48. 48.
    Pasparakis M (2009) Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol 9:778–788PubMedCrossRefGoogle Scholar
  49. 49.
    Rinkel GJ, Algra A (2011) Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage. Lancet Neurol 10:349–356PubMedCrossRefGoogle Scholar
  50. 50.
    Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ (2013) Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 12:105–118PubMedCrossRefGoogle Scholar
  51. 51.
    Rowland MJ, Hadjipavlou G, Kelly M, Westbrook J, Pattinson KT (2012) Delayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm. Br J Anaesth 109:315–329PubMedCrossRefGoogle Scholar
  52. 52.
    Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635PubMedCrossRefGoogle Scholar
  53. 53.
    Saggu R (2013) Characterisation of Endothelin-1-Induced intrastriatal lesions within the juvenile and adult rat brain using MRI and 31P MRS. Transl Stroke Res 4:351–367PubMedCrossRefGoogle Scholar
  54. 54.
    Sarkar FH, Li Y, Wang Z, Kong D (2008) NF-kappaB signaling pathway and its therapeutic implications in human diseases. Int Rev Immunol 27:293–319PubMedCrossRefGoogle Scholar
  55. 55.
    Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97:14–37PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Sehba FA, Pluta RM, Zhang JH (2011) Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol 43:27–40PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Shih HC, Lin CL, Lee TY, Lee WS, Hsu C (2006) 17beta-Estradiol inhibits subarachnoid hemorrhage-induced inducible nitric oxide synthase gene expression by interfering with the nuclear factor kappa B transactivation. Stroke 37:3025–3031PubMedCrossRefGoogle Scholar
  58. 58.
    Simard JM, Tosun C, Ivanova S, Kurland DB, Hong C, Radecki L, Gisriel C, Mehta R, Schreibman D, Gerzanich V (2012) Heparin reduces neuroinflammation and transsynaptic neuronal apoptosis in a model of subarachnoid hemorrhage. Transl Stroke Res 3:155–165PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Smith CM, Chen Y, Sullivan ML, Kochanek PM, Clark RS (2011) Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis 43:52–59PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Switzer JA, Sikora A, Ergul A, Waller JL, Hess DC, Fagan SC (2012) Minocycline prevents IL-6 increase after acute ischemic stroke. Transl Stroke Res 3:363–368PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tajiri N, Dailey T, Metcalf C, Mosley YI, Lau T, Staples M, van Loveren H, Kim SU, Yamashima T, Yasuhara T, Date I, Kaneko Y, Borlongan CV (2013) In vivo animal stroke models: a rationale for rodent and non-human primate models. Transl Stroke Res 4:308–321PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Uchiyama Y, Shibata M, Koike M, Yoshimura K, Sasaki M (2008) Autophagy-physiology and pathophysiology. Histochem Cell Biol 129:407–420PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. Lancet 369:306–318PubMedCrossRefGoogle Scholar
  64. 64.
    Vomhof-Dekrey EE, Picklo MJ Sr (2012) The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism. J Nutr Biochem 23:1201–1206PubMedCrossRefGoogle Scholar
  65. 65.
    Wang Z, Chen G, Zhu WW, Zhou D (2010) Activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) in the basilar artery after subarachnoid hemorrhage in rats. Ann Clin Lab Sci 40:233–239PubMedGoogle Scholar
  66. 66.
    Wang Z, Ma C, Meng CJ, Zhu GQ, Sun XB, Huo L, Zhang J, Liu HX, He WC, Shen XM, Shu Z, Chen G (2012) Melatonin activates the Nrf2-ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model. J Pineal Res 53:129–137PubMedCrossRefGoogle Scholar
  67. 67.
    Wang Z, Shi XY, Yin J, Zuo G, Zhang J, Chen G (2012) Role of autophagy in early brain injury after experimental subarachnoid hemorrhage. J Mol Neurosci 46:192–202PubMedCrossRefGoogle Scholar
  68. 68.
    Wang Z, Zuo G, Shi XY, Zhang J, Fang Q, Chen G (2011) Progesterone administration modulates cortical TLR4/NF-kappaB signaling pathway after subarachnoid hemorrhage in male rats. Mediators Inflamm 2011:848309PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Wu C, Hu Q, Chen J, Yan F, Li J, Wang L, Mo H, Gu C, Zhang P, Chen G (2013) Inhibiting HIF-1alpha by 2ME2 ameliorates early brain injury after experimental subarachnoid hemorrhage in rats. Biochem Biophys Res Commun 437:469–474PubMedCrossRefGoogle Scholar
  70. 70.
    Yan J, Chen C, Lei J, Yang L, Wang K, Liu J, Zhou C (2006) 2-Methoxyestradiol reduces cerebral vasospasm after 48 hours of experimental subarachnoid hemorrhage in rats. Exp Neurol 202:348–356PubMedCrossRefGoogle Scholar
  71. 71.
    Yan J, Li L, Khatibi NH, Yang L, Wang K, Zhang W, Martin RD, Han J, Zhang J, Zhou C (2011) Blood-brain barrier disruption following subarchnoid hemorrhage may be facilitated through PUMA induction of endothelial cell apoptosis from the endoplasmic reticulum. Exp Neurol 230:240–247PubMedCrossRefGoogle Scholar
  72. 72.
    You WC, Li W, Zhuang Z, Tang Y, Lu HC, Ji XJ, Shen W, Shi JX, Zhou ML (2012) Biphasic activation of nuclear factor-kappa B in experimental models of subarachnoid hemorrhage in vivo and in vitro. Mediators Inflamm 2012:786242PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Zacharia BE, Hickman ZL, Grobelny BT, DeRosa P, Kotchetkov I, Ducruet AF, Connolly ES Jr (2010) Epidemiology of aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am 21:221–233PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang J, Zhu Y, Zhou D, Wang Z, Chen G (2010) Recombinant human erythropoietin (rhEPO) alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Nrf2-ARE pathway. Cytokine 52:252–257PubMedCrossRefGoogle Scholar
  75. 75.
    Zhao H, Ji Z, Tang D, Yan C, Zhao W, Gao C (2013) Role of autophagy in early brain injury after subarachnoid hemorrhage in rats. Mol Biol Rep 40:819–827PubMedCrossRefGoogle Scholar
  76. 76.
    Zhao X, Aronowski J (2013) Nrf2 to pre-condition the brain against injury caused by products of hemolysis after ICH. Transl Stroke Res 4:71–75PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Zhao XD, Zhou YT, Lu XJ (2013) Sulforaphane enhances the activity of the Nrf2-ARE pathway and attenuates inflammation in OxyHb-induced rat vascular smooth muscle cells. Inflamm Res 62:857–863PubMedCrossRefGoogle Scholar
  78. 78.
    Zhao XD, Zhou YT, Zhang X, Wang XL, Qi W, Zhuang Z, Su XF, Shi JX (2010) Expression of NF-E2-related factor 2 (Nrf2) in the basilar artery after experimental subarachnoid hemorrhage in rabbits: a preliminary study. Brain Res 1358:221–227PubMedCrossRefGoogle Scholar
  79. 79.
    Zhou ML, Shi JX, Hang CH, Cheng HL, Qi XP, Mao L, Chen KF, Yin HX (2007) Potential contribution of nuclear factor-kappaB to cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. J Cereb Blood Flow Metab 27:1583–1592PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sheng Chen
    • 1
    • 2
  • Haijian Wu
    • 1
  • Jiping Tang
    • 2
  • Jianmin Zhang
    • 1
  • John H. Zhang
    • 2
    Email author
  1. 1.Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
  2. 2.Department of Physiology and PharmacologyLoma Linda UniversityLoma LindaUSA

Personalised recommendations