Mean-Variance Blind Noise Estimation for CT Images

  • Alex Pappachen James
  • A. P. Kavitha
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 264)


Noise estimation is a precursor to de-noising techniques to improve the signal and visual quality of medical images. We present a noise estimation algorithm using the local image statistics of the CT images at voxel level. The algorithm calculates the local mean variance distribution and detects the minimised error rates for identifying the tolerance range of voxel to artificial noises. The reliability of the method is experimentally verified using Gaussian noise and Speckle noise on CT scan images.


Compute Tomography Image Noise Variance Noisy Image Speckle Noise Noise Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achim, A., Bezerianos, A., Tsakalides, P.: Novel bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Transactions on Medical Imaging 20(8), 772–783 (2001)CrossRefGoogle Scholar
  2. 2.
    Brailean, J.C., Kleihorst, R.P., Efstratiadis, S., Katsaggelos, A.K., Lagendijk, R.L.: Noise reduction filters for dynamic image sequences: a review. Proceedings of the IEEE 83(9), 1272–1292 (1995)CrossRefGoogle Scholar
  3. 3.
    Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical analysis 29(1), 182–193 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Gerig, G., Kubler, O., Kikinis, R., Jolesz, F.A.: Nonlinear anisotropic filtering of mri data. IEEE Transactions on Medical Imaging 11(2), 221–232 (1992)CrossRefGoogle Scholar
  5. 5.
    Immerkaer, J.: Fast noise variance estimation. Computer Vision and Image Understanding 64(2), 300–302 (1996)CrossRefGoogle Scholar
  6. 6.
    Long, C., Brown, E., Triantafyllou, C., Aharon, I., Wald, L., Solo, V.: Nonstationary noise estimation in functional mri. NeuroImage 28(4), 890–903 (2005)CrossRefGoogle Scholar
  7. 7.
    McCann, A., Workman, A., McGrath, C.: A quick and robust method for measurement of signal-to-noise ratio in mri. Physics in Medicine and Biology 58(11), 3775 (2013)CrossRefGoogle Scholar
  8. 8.
    Meer, P., Jolion, J.M., Rosenfeld, A.: A fast parallel algorithm for blind estimation of noise variance. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(2), 216–223 (1990)CrossRefGoogle Scholar
  9. 9.
    Nowak, R.D.: Wavelet-based rician noise removal for magnetic resonance imaging. IEEE Transactions on Image Processing 8(10), 1408–1419 (1999)CrossRefGoogle Scholar
  10. 10.
    Pizurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A versatile wavelet domain noise filtration technique for medical imaging. IEEE Transactions on Medical Imaging 22(3), 323–331 (2003)CrossRefGoogle Scholar
  11. 11.
    Rank, K., Lendl, M., Unbehauen, R.: Estimation of image noise variance. In: IEE Proceedings of the Vision, Image and Signal Processing, vol. 146, pp. 80–84. IET (1999)Google Scholar
  12. 12.
    Sendur, L., Selesnick, I.W.: Bivariate shrinkage with local variance estimation. IEEE Signal Processing Letters 9(12), 438–441 (2002)CrossRefGoogle Scholar
  13. 13.
    Sijbers, J., Den Dekker, A., Van Audekerke, J., Verhoye, M., Van Dyck, D.: Estimation of the noise in magnitude mr images. Magnetic Resonance Imaging 16(1), 87–90 (1998)CrossRefGoogle Scholar
  14. 14.
    Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., Jeurissen, B.: Weighted linear least squares estimation of diffusion mri parameters: strengths, limitations, and pitfalls. NeuroImage (2013)Google Scholar
  15. 15.
    Zhu, X., Gur, Y., Wang, W., Fletcher, P.T.: Model selection and estimation of multi-compartment models in diffusion mri with a rician noise model. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 644–655. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Nazarbayev University and Enview R&D LabsAstanaKazakhstan
  2. 2.University of KeralaThiruvananthapuramIndia

Personalised recommendations