Advertisement

Computing Optimal Reachability Costs in Priced Dense-Timed Pushdown Automata

  • Parosh Aziz Abdulla
  • Mohamed Faouzi Atig
  • Jari Stenman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)

Abstract

We study priced dense-timed pushdown automata that are a generalization of the classic model of pushdown automata, in the sense that they operate on real-valued clocks, and that the stack symbols have real-valued ages. Furthermore, the model allows a cost function that assigns transition costs to transitions and storage costs to stack symbols. We show that the optimal cost, i.e., the infimum of the costs of the set of runs reaching a given control state, is computable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: LICS (2012)Google Scholar
  2. 2.
    Abdulla, P.A., Atig, M.F., Stenman, J.: The minimal cost reachability problem in priced timed pushdown systems. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 58–69. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-state systems. In: LICS, pp. 313–321 (1996)Google Scholar
  4. 4.
    Abdulla, P.A., Mayr, R.: Computing optimal coverability costs in priced timed Petri nets. In: LICS (2011)Google Scholar
  5. 5.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. TCS 318(3), 297–322 (2004)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Bouyer, P., Brihaye, T., Bruyere, V., Raskin, J.F.: On the optimal reachability problem of weighted timed automata. FMSD 31(2), 135–175 (2007)MATHGoogle Scholar
  10. 10.
    Dang, Z.: Pushdown timed automata: a binary reachability characterization and safety verification. TCS 302(1-3), 93–121 (2003)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Karp, R.M., Miller, R.E.: Parallel program schemata. JCSS (1969)Google Scholar
  12. 12.
    Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Uezato, Y., Minamide, Y.: Pushdown systems with stack manipulation. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 412–426. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Parosh Aziz Abdulla
    • 1
  • Mohamed Faouzi Atig
    • 1
  • Jari Stenman
    • 1
  1. 1.Dept. of Information TechnologyUppsala UniversitySweden

Personalised recommendations