Are Good-for-Games Automata Good for Probabilistic Model Checking?

  • Joachim Klein
  • David Müller
  • Christel Baier
  • Sascha Klüppelholz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)

Abstract

The potential double exponential blow-up for the generation of deterministic ω-automata for linear temporal logic formulas motivates research on weaker forms of determinism. One of these notions is the good-for-games property that has been introduced by Henzinger and Piterman together with an algorithm for generating good-for-games automata from nondeterministic Büchi automata. The contribution of our paper is twofold. First, we report on an implementation of this algorithms and exhaustive experiments. Second, we show how good-for-games automata can be used for the quantitative analysis of systems modeled by Markov decision processes against ω-regular specifications and evaluate this new method by a series of experiments.

Keywords

Posit Arena Univer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babiak, T., Blahoudek, F., Křetínský, M., Strejček, J.: Effective translation of LTL to deterministic rabin automata: Beyond the (F,G)-fragment. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24–39. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)Google Scholar
  3. 3.
    Benedikt, M., Lenhardt, R., Worrell, J.: Two variable vs. linear temporal logic in model checking and games. Logical Methods in Computer Science 9(2) (2013)Google Scholar
  4. 4.
    Boker, U., Kuperberg, D., Kupferman, O., Skrzypczak, M.: Nondeterminism in the presence of a diverse or unknown future. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 89–100. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Bustan, D., Rubin, S., Vardi, M.Y.: Verifying ω-regular properties of Markov chains. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 189–201. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)Google Scholar
  7. 7.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of ACM 42(4), 857–907 (1995)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Couvreur, J.M., Saheb, N., Sutre, G.: An optimal automata approach to LTL model checking of probabilistic systems. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 361–375. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-state verification. In: ICSE 1999, pp. 411–420. ACM (1999)Google Scholar
  10. 10.
    Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)MATHGoogle Scholar
  13. 13.
    Henzinger, T., Piterman, N.: Solving games without determinization. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 395–410. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear temporal logic. Theoretical Computer Science 363(2), 182–195 (2006)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic ω-automata. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 51–61. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Klein, J., Müller, D., Baier, C., Klüppelholz, S.: Are good-for-games automata good for probabilistic model checking (extended version). Tech. rep., Technische Universität Dresden (2013), http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/LATA14/
  17. 17.
    Křetínský, J., Garza, R.L.: Rabinizer 2: Small deterministic automata for LTL ∖  GU. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 446–450. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Kupferman, O., Piterman, N., Vardi, M.: Safraless compositional synthesis. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Kupferman, O., Rosenberg, A.: The blow-up in translating LTL to deterministic automata. In: van der Meyden, R., Smaus, J.-G. (eds.) MoChArt 2010. LNCS, vol. 6572, pp. 85–94. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Kupferman, O., Vardi, M.: From linear time to branching time. ACM Transactions on Computational Logic 6(2), 273–294 (2005)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Kupferman, O., Vardi, M.: Safraless decision procedures. In: FOCS 2005, pp. 531–542. IEEE Computer Society (2005)Google Scholar
  22. 22.
    Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: A hybrid approach. International Journal on Software Tools for Technology Transfer (STTT) 6(2), 128–142 (2004)Google Scholar
  23. 23.
    Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic model checking of the IEEE 802.11 wireless local area network protocol. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, pp. 169–187. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Latvala, T.: Efficient model checking of safety properties. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 74–88. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Löding, C.: Optimal bounds for transformations of ω-automata. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 97–109. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Michel, M.: Complementation is more difficult with automata on infinite words. CNET, Paris (1988)Google Scholar
  27. 27.
    Morgenstern, A., Schneider, K.: From LTL to symbolically represented deterministic automata. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 279–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. Logical Methods in Computer Science 3(3:5), 1–21 (2007)Google Scholar
  29. 29.
    Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games. In: LICS 2006, pp. 275–284. IEEE (2006)Google Scholar
  30. 30.
    Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc., New York (1994)CrossRefMATHGoogle Scholar
  31. 31.
    Safra, S.: On the complexity of ω-automata. In: FOCS, pp. 319–327. IEEE (1988)Google Scholar
  32. 32.
    Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  34. 34.
    Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS 1986, pp. 332–344. IEEE Computer Society (1986)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Joachim Klein
    • 1
  • David Müller
    • 1
  • Christel Baier
    • 1
  • Sascha Klüppelholz
    • 1
  1. 1.Institute of Theoretical Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations